
www.manaraa.com

University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

1-26-2017

Changing the Pathobiological Paradigm in
Myelodysplastic Syndromes: The NLRP3
Inflammasome Drives the MDS Phenotype
Ashley Basiorka
University of South Florida, aabasiorka@gmail.com

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the Molecular Biology Commons

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in
Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
scholarcommons@usf.edu.

Scholar Commons Citation
Basiorka, Ashley, "Changing the Pathobiological Paradigm in Myelodysplastic Syndromes: The NLRP3 Inflammasome Drives the
MDS Phenotype" (2017). Graduate Theses and Dissertations.
http://scholarcommons.usf.edu/etd/6613

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F6613&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F6613&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F6613&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F6613&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F6613&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F6613&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=scholarcommons.usf.edu%2Fetd%2F6613&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


www.manaraa.com

 
 

 

 
 
 
 
 

Changing the Pathobiological Paradigm in Myelodysplastic Syndromes: The NLRP3 

Inflammasome Drives the MDS Phenotype  

 
 
 

by 
 
 
 

Ashley Ann Basiorka 
 
 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
Department of Cell Biology, Microbiology, and Molecular Biology 

College of Arts and Sciences 
University of South Florida 

 
 

Major Professor: Alan List, M.D. 
Sheng Wei, M.D. 

PK Epling-Burnette, PharmD., Ph.D. 
Javier Pinilla-Ibarz, M.D., Ph.D. 

 
 

Date of Approval:  
January 24, 2017 

 
 
 

Keywords: pyroptosis, caspase-1, S100A9, NADPH oxidase, β-catenin 
 

Copyright © 2017, Ashley Ann Basiorka 
 
 



www.manaraa.com

 
 

 
 
 
 
 

DEDICATION 

 

This dissertation is written with dedication to my incredible family, who matters 

most to me above all else. I recognize how fortunate and blessed I am to have each of 

you in my life. Your unwavering support has made it possible for me to be here, pursing 

my greatest dreams and aspirations. 

First and foremost, this work is dedicated to my father, whose diagnosis of acute 

lymphoblastic leukemia set a nine-year-old girl on a tireless mission to make advances 

in hematology oncology. I am who I am because of you. I cannot erase the past, and I 

know those memories are ingrained in you as they are in me. I do, however, hope you 

take pride in this work, and that it may serve as a positive consequence of an 

extraordinarily trying time. Thank you for never giving up and for never losing hope. 

Next, I wholeheartedly dedicate this work to my mother. I will never be able to 

properly express just how fortunate I am to be your daughter. Never forget how 

incredible you are. You have worn many hats over the years, and I thank you for being 

my biggest fan through it all, from my fleeting interests to my greatest passions. You are 

my foundation, and I thank you for molding me into the person I am today. I hope to 

always make you proud. 

To Eric, the greatest brother a girl could hope to have. How lucky I am to call you 

my best friend. Thank you for always making me laugh, even when it hasn’t been easy 

on us. I promise to always be the “best little sister that [you] never wanted.” In chasing 



www.manaraa.com

 
 

 

your aspirations with an unrelenting force, you have taught me how to dream. I find your 

ardency to be contagious, and I thank you for being my inspiration. Thank you for 

always having my back no matter what. It will always be us against the world. 

Ta praca jest także dedykowana do mojej ukochanej Babcia. Babciu, dziękuję ci 

serdecznie za wszystkie Twoje modlitwy w mojej intencji, które zawsze mi pomagały. 

Dziekuję za ciepło, troskę, miłość i dobroć jaką mi zawsze dałaś. Nauczyłaś mi jak być 

dobrym człowiekiem. Wpoiłaś we mnie wszystkie tradycje rodzinne. Babciu za twoją 

dobroć i miłość składam wyrazy szacunku i podziękowania. Bądź zawsze uśmiechnięta 

i nie zapomnij jak bardzo Cię kocham! 

I thank my godmother, Grace, for knowing me better than I know myself. Thank 

you for always being honest and direct, for your constant encouragement, and most 

importantly, for teaching me your strength and independence. I would be lost without 

you. 

To Christopher, I thank you for being the parts of me that are lacking and so 

much more than just that. You are engrained in every part of my being and I know that I 

am my best and truest self because of you. Thank you for supporting me in every facet 

and for being my optimism, motivation and strength when I’ve needed it the most. May 

our memories remind us of where we’ve been, may the future belong to our dreams and 

aspirations, and may the present be a time we can finally share together. 

Last, but certainly not least, thank you to the remainder of my family and to my 

closest friends. Each of you has played an instrumental role in my progress, and I 

cannot thank you enough for being alongside me every step of the way. 

  



www.manaraa.com

 
 

 

 
 
 
 
 

ACKNOWLEDGMENTS 

 

First and foremost, I want to begin by acknowledging my mentor, Dr. Alan List. It 

has truly been the privilege of a lifetime working for you. Thank you for taking a chance 

on me, and allowing me to work in your laboratory as an undergraduate student when I 

had no formal research experience. In doing so, you provided me the opportunity to 

become so completely enthralled and passionate about research, which has brought me 

to where I am today. I am very fortunate to have worked on your team, and to have had 

the opportunity to learn from someone as inspirational and outstanding as yourself. 

Thank you for believing in me and helping me grow as a scientist. Most importantly, I 

thank you for giving me the chance to make contributions to malignant hematology, a 

field of research that means so much to me personally. A lifetime of thanks seems 

insufficient to account for the influence you have had on me and my career. Thank you 

for being such an extraordinary mentor.  

To my committee members, Dr. Sheng Wei, Dr. PK Epling-Burnette, and Dr. 

Javier Pinilla-Ibarz, I thank you for all of your guidance and support, and for being 

alongside me during this process. Dr. Wei, thank you for making sure I’m always smiling 

and for sharing your life lessons with me. You have been a constant source of support, 

and I appreciate it immensely. You will always be my favorite countryman. I thank Dr. 

Epling-Burnette and Dr. Pinilla-Ibarz for epitomizing what it means to be great 

translational scientists. Your unique insights and ideas highlight the forward-thinking I 



www.manaraa.com

 
 

 

hope to have as an investigator. I wish to also extend my sincerest appreciation to Dr. 

Daniel Starczynowski, a distinguished investigator whom I have the privilege of having 

as my outside chairman. I have the upmost respect for you and your work. You are a 

talented and accomplished translational investigator, and it is really an honor to have 

you take part in my defense.  

I would like to recognize the members of the List laboratory, all of my colleagues 

and collaborators, my committee members’ labs, and the core facilities located here at 

Moffitt Cancer Center, especially the Flow Cytometry and Microscopy core facility staff. 

Thank you for sharing your wisdom, for offering advice and direction, and for ultimately 

making me a better scientist. I would like to thank Dr. Erika Eksioglu and Dr. Xianghong 

Chen for diligently trying to make me love animal work and for always being friendly and 

welcoming faces across the bridge. Erika, you have been a true friend. Thank you for 

always looking out for me, and for all the great memories. Dr. Eric Padron, I thank you 

for being a Food Network channel-worthy baking critic, but more importantly for sharing 

your ideas with me and challenging me to think about my work from different 

perspectives. I know that both my baking and my science have improved because of 

you. I am honored to have worked closely with Dr. David Sallman, The Guardian of The 

Guardian. Thank you for sharing your humor and for keeping science fun. You have 

always had a positive outlook for me and I’ve appreciated the support. I would like to 

thank Dr. John Cleveland for the time he has generously provided to critique and guide 

my work. You are an impressive investigator and it has been a real honor to have you 

familiar with and invested in my research.  



www.manaraa.com

 
 

 

Moreover, I want to extend my appreciation to the members of the List 

laboratory, both past and present, who helped shape my learning and progress as both 

a student and a researcher. Dr. Lubomir Sokol, thank you for sharing your brilliance with 

me. If I have even half of your intelligence and wisdom one day, I know I’ll make for a 

great scientist. I feel very fortunate to have had the opportunity to work with you and 

learn from you. Dr. Kathy McGraw, I thank you for being patient with me over the years 

in answering all of my questions and curiosities. I would like to thank Brittany Irvine for 

appreciating my quirkiness, sharing my love of happy dances and random self-

composed songs, and for diversifying my antibody repertoire with constant immune 

attacks. I will undoubtedly miss you! Amy McLemore, I thank you for the support you’ve 

shown me these last few months. It has been fun “science-ing” with you. To Dianne 

Sullivan, Guinevere Hart, and Krystal Ring, I cannot thank you enough for your behind 

the scenes help and support. You each go beyond your responsibilities to support me, 

and it has not gone unappreciated or unnoticed. 

Lastly, I extend my thanks to those individuals who I have not named but have 

contributed to my success. Whether it was through assisting on an experiment, offering 

knowledge or technical expertise, or even as simple as sharing a smile or greeting in 

passing, I thank you for helping make my time at USF/Moffitt as memorable and 

extraordinary as it has been. 

 



www.manaraa.com

i 
 

 
 
 
 
 

TABLE OF CONTENTS 
 

List of Tables .................................................................................................................... v 
 
List of Figures .................................................................................................................. vi 
 
Abstract ............................................................................................................................ x 
 
Chapter 1: Background ..................................................................................................... 1 
 Myelodysplastic Syndromes (MDS) ....................................................................... 1 
  MDS Overview ............................................................................................ 1 
  Etiology of MDS .......................................................................................... 2 
  MDS Classification ...................................................................................... 3 
  MDS Prognostication .................................................................................. 6 
  MDS Treatment ......................................................................................... 10 
   Treatment of lower-risk patients ..................................................... 11 
   Treatment of higher-risk patients ................................................... 13 
  Molecular and Cytogenetic Alterations ..................................................... 15 
 Aberrant Immune Activation in MDS .................................................................... 19 
  Autoimmune Disease and Infection .......................................................... 19 
  Cytokine, Chemokine and Growth Factor Profile ...................................... 19 
  Overview of TLR Signaling ....................................................................... 20 
  TLR Signaling Dysregulation in MDS ........................................................ 22 
  Bone Marrow Microenvironment Abnormalities ........................................ 25 
  Overview of Hematopoiesis ...................................................................... 27 
  Lymphoid Cell Lineage Involvement ......................................................... 29 
  The Role of Myeloid-Derived Suppressor Cells (MDSC) and S100A9 ..... 32 
 The 5q- Syndrome ............................................................................................... 35 
  Overview ................................................................................................... 35 
  Treatment of Del(5q) MDS ........................................................................ 37 
  Pathobiology of the 5q- Syndrome ............................................................ 38 
   Ribosomal protein S14 (RPS14) .................................................... 38 
   Casein kinase 1A1 (CSNK1A1) ..................................................... 40 
   TLR4-TRAF6-NF-κB-dependent signaling axis .............................. 41 
   Diaphanous related formin 1 (DIAPH1) .......................................... 43 
 Programmed Cell Death ...................................................................................... 43 
  Caspases .................................................................................................. 43 
  Apoptosis .................................................................................................. 45 
  Autophagy ................................................................................................. 48 
  Historic View of Cell Death in MDS ........................................................... 50 
 Pyroptotic Cell Death ........................................................................................... 52 



www.manaraa.com

 
 

ii 
 

  History and Hallmarks of Pyroptosis ......................................................... 52 
  NLR Proteins  ............................................................................................ 56 
  Inflammasome Complexes and Canonical Activation and Signaling ........ 57 
  Non-Canonical Inflammasome Signaling .................................................. 63 
 The NLRP3 Inflammasome ................................................................................. 65 
  NLRP3 Agonists ........................................................................................ 65 
  NLRP3 Inflammasome Activation: Signal 1 .............................................. 67 
  NLRP3 Inflammasome Activation: Signal 2 .............................................. 68 
  Endogenous Regulation of the NLRP3 Inflammasome ............................ 71 
  Evidence of Pyroptosis in the MDS Literature .......................................... 73 
 β-Catenin ............................................................................................................. 74 
  Canonical Wnt/β-Catenin Signaling .......................................................... 74 
  Activation of β-Catenin is Regulated by Oxidative Stress ......................... 77 
 
Chapter 2: The NLRP3 Inflammasome Functions as a Driver of the Myelodysplastic 
Syndromes Phenotype ................................................................................................... 79 
 Introduction .......................................................................................................... 79 
 Results ................................................................................................................. 81 
  MDS HSPC manifest inflammasome activation and pyroptosis ............... 81 
  The alarmin S100A9 initiates pyroptosis ................................................... 88 
  Inflammasome-activated cation channels increase the size of MDS 

progenitors ......................................................................................... 90 
  Inhibition of pyroptosis promotes effective hematopoiesis in MDS ........... 92 
  S100A9 is sufficient to provoke HSPC pyroptosis in vivo ......................... 93 
  S100A9 and MDS somatic gene mutations trigger pyroptosis and  

β-catenin activation via ROS .............................................................. 99 
  MDS HSPC are primed for NLRP3 inflammasome activation ................ 108 
  MDS MSC and stromal-derived lineages undergo pyroptosis ................ 110 
 Discussion ......................................................................................................... 114 
 Methods ............................................................................................................. 120 
  MDS patient specimens .......................................................................... 120 
  Mice ........................................................................................................ 122 
  Reagents and cells ................................................................................. 122 
  Immunofluorescence confocal microscopy ............................................. 122 
  Flow cytometry analyses ......................................................................... 123 
  Lentiviral infection of primary mononuclear cells .................................... 125 
  Enzyme-linked immunosorbent assays (ELISA) ..................................... 128 
  Intracellular S100A9 flow cytometry ........................................................ 128 
  Pore formation assay .............................................................................. 128 
  Real-time quantitative PCR ..................................................................... 129 
  Colony formation assays ......................................................................... 129 
  ROS detection ......................................................................................... 130 
  ICTA mouse treatment studies ............................................................... 130 
  SRSF2 transfection of HEK293T cells .................................................... 130 
  Immunoblotting ....................................................................................... 130 
  Immunoprecipitation ................................................................................ 131 



www.manaraa.com

 
 

iii 
 

  ASC crosslinking ..................................................................................... 131 
  Next-generation sequencing and mutation identification ........................ 132 
  POP-1 overexpression ............................................................................ 132 
  Statistical analyses ................................................................................. 134 
 
Chapter 3: Pyroptosis of Erythroid Progenitors Accounts for the Erythroid Defect 
Characteristic of the 5q- Syndrome .............................................................................. 135 
 Introduction ........................................................................................................ 135 
 Results ............................................................................................................... 137 
  Rps14 haploinsufficiency induces NLRP3 inflammasome activation 

in erythroid progenitors but not HSPC ............................................. 137 
  Rps14 haploinsufficient erythroid precursors predominantly 

undergo pyroptosis ........................................................................... 140 
  ROS and β-catenin activation are significantly increased in Rps14  

haploinsufficient erythroid progenitors ............................................. 142 
  Concurrent loss of mDia1 and miR-146a results in pyroptotic cell  

death of erythroid precursors ........................................................... 143 
  ROS and β-catenin activation are significantly increased in  

mDia1/miR-146a double knockout mice .......................................... 147 
  NLRP3 inflammasome inhibition restores effective erythropoiesis in 

del(5q) MDS ..................................................................................... 148 
 Discussion ......................................................................................................... 150 
 Methods ............................................................................................................. 154 
  MDS patient specimens .......................................................................... 154 
  Mice ........................................................................................................ 154 
  Reagents and cells ................................................................................. 154 
  Immunofluorescence confocal microscopy ............................................. 154 
  Cell death flow cytometry assay ............................................................. 155 
  ROS detection ......................................................................................... 155 
  ASC oligomerization ............................................................................... 156 
  Colony formation assays ......................................................................... 156 
  Statistical analyses ................................................................................. 156 
 
Chapter 4: NLRP3 Inflammasome-Derived ASC Specks are a Diagnostic 
Biomarker for Myelodysplastic Syndromes (MDS) ....................................................... 157 
 Introduction ........................................................................................................ 157 
 Results ............................................................................................................... 158 
  ASC specks are significantly increased in MDS ..................................... 158 
  The percentage of PB plasma-derived ASC specks is a diagnostic 

biomarker for MDS ........................................................................... 162 
  Specks may serve as a biomarker index of ineffective 

hematopoiesis .................................................................................. 166 
 Discussion ......................................................................................................... 168 
 Methods ............................................................................................................. 172 
  Patient specimens ................................................................................... 172 
  Reagents and cells ................................................................................. 173 



www.manaraa.com

 
 

iv 
 

  ASC speck staining ................................................................................. 173 
  Immunofluorescence confocal microscopy ............................................. 173 
  Enzyme-linked immunosorbent assay (ELISA) ....................................... 174 
  Statistical analyses ................................................................................. 174 
 
Chapter 5: Discussion .................................................................................................. 176 
 Implications ........................................................................................................ 176 
  MDS-Specific Implications ...................................................................... 176 
  Implications Related to Other Inflammatory Conditions and Diseases  

of Major Health Concern  ................................................................. 178 
   Inflammasomopathies .................................................................. 179 
   Type 2 diabetes mellitus .............................................................. 182 
   Cardiovascular disease ................................................................ 184 
   Multiple sclerosis .......................................................................... 185 
   Alzheimer’s disease ..................................................................... 186 
   Parkinson’s disease ..................................................................... 187 
   Gout and pseudogout ................................................................... 188 
   Fibrosing disorders ....................................................................... 189 
   Ischemia-reperfusion injury .......................................................... 192 
 Future Directions ............................................................................................... 193 
  NLRP1 Inflammasome Activation ........................................................... 193 
  ER Stress/Inflammasome Signaling Axis ................................................ 198 
  5’ Adenosine Monophosphate (AMP)- Activated Protein Kinase ............ 199 
 Conclusion ......................................................................................................... 202 
 
References ................................................................................................................... 204 
 
Appendix 1 .................................................................................................................... 239 
 Copyright Permission ......................................................................................... 239 
 
 
 
 
  



www.manaraa.com

 
 

v 
  

 
 
 
 
 

LIST OF TABLES 
 
 
Table 1. Overview of the FAB and WHO classification systems for MDS ...................... 7 
 
Table 2. IPSS and IPSS-R scoring systems for MDS risk stratification ......................... 9 
 
Table 3. Standard and investigational therapeutic approaches for the treatment 

of MDS ........................................................................................................... 12 
 
Table 4. Primer sequences used for real-time quantitative PCR ............................... 129 
 
Table 5. Clinical and genotypic characteristics of sequenced patients ...................... 133 
 
Table 6. Mean percentage of PB plasma-derived ASC speck values across 

sample cohorts ............................................................................................. 164 
 
  



www.manaraa.com

 
 

vi 
 

 
 
 
 
 

LIST OF FIGURES 
 
 
Figure 1. Temporal order and frequency of recurrent somatic gene mutations in 
 MDS ............................................................................................................... 17 
 
Figure 2. Overview of MyD88-dependent and TRIF-dependent TLR signaling 
 pathways ........................................................................................................ 23 
 
Figure 3. Hierarchy of the mesenchymal lineage .......................................................... 26 
 
Figure 4. Overview of hematopoiesis ............................................................................ 30 
 
Figure 5. General mechanisms of hematopoietic inhibition by MDSC and the  
 role of the MDSC/S100A9 axis in MDS .......................................................... 36 
 
Figure 6. Classification of human caspases .................................................................. 46 
 
Figure 7. Simplistic overview of the intrinsic and extrinsic apoptotic pathways ............. 47 
 
Figure 8. Autophagy and mitophagy maintain cellular homeostasis through 
 catabolism ...................................................................................................... 49 
 
Figure 9. The hallmarks of pyroptosis ........................................................................... 53 
 
Figure 10. Domain organization of the nucleotide-binding oligomerization 
 domain (NOD)-like receptors (NLRs) ............................................................. 58 
 
Figure 11. Activation of pro-caspase-1 by inflammasome complexes requires 
 ASC-dependent or ASC-independent nucleation and polymerization ............ 62 
 
Figure 12. The non-canonical inflammasome signaling pathway ................................... 66 
 
Figure 13. Canonical Wnt/β-catenin signaling depicted in the context of  
 pathway inactivation and activation ................................................................ 76 
 
Figure 14. Oxidative stress positively regulates β-catenin activation and  
 signaling ......................................................................................................... 78 
 
Figure 15. Fulminant pyroptosis is manifest in HSPC and progeny in MDS .................. 82 
 



www.manaraa.com

 
 

vii 
 

Figure 16. NLRP3 inflammasome assembly may be MDS-specific ............................... 85 
 
Figure 17. Caspase-1 activation significantly correlates with the extent of  
 pyroptosis detected in MDS BM-MNC ............................................................ 87 
 
Figure 18. S100A9 initiates pyroptosis in MDS .............................................................. 89 
 
Figure 19. MDS precursors evidence cell swelling, a pyroptotic hallmark ...................... 91 
 
Figure 20. Inhibition of pyroptosis abrogates MDS HSPC death and augments 
 colony forming capacity .................................................................................. 94 
 
Figure 21. Pyroptosis is the principal mechanism of HSPC death in S100A9 
 transgenic mice .............................................................................................. 96 
 
Figure 22. ICTA inhibits inflammasome activation ......................................................... 98 
 
Figure 23. S100A9 induces ROS through NADPH oxidase to activate β-catenin ........ 100 
 
Figure 24. U2AF1 mutations manifest in MDS provoke pyroptosis and induce 
 NOX-dependent activation of β-catenin ....................................................... 102 
 
Figure 25. SF3B1 K700E induces pyroptosis and supports self-renewal through 
 β-catenin activation ...................................................................................... 105 
 
Figure 26. SRSF2 mutations induce pyroptosis and support self-renewal through 
 β-catenin ....................................................................................................... 107 
 
Figure 27. Asxl1 and Tet2 deletions are sufficient to induce pyroptosis and drive 
 self-renewal through β-catenin activation ..................................................... 109 
 
Figure 28. Somatic gene mutations and mutation variant allele fraction correlate 
 with the extent of pyroptosis in MDS ............................................................ 111 
 
Figure 29. Inflammasome activation occurs via up-regulation of TXNIP and  
 down-regulation of POP-1 ............................................................................ 113 
 
Figure 30. Pyroptosis is manifest in MSC and stromal-derived lineages in  
 MDS ............................................................................................................. 115 
 
Figure 31. An S100A9/pyroptosis circuit provokes phenotypes manifest in  
 MDS ............................................................................................................. 121 
 
Figure 32. Flow cytometry gating strategies for evaluating the extent of  
 pyroptosis versus apoptosis in normal/MDS specimens and  
 WT/S100A9Tg mice ..................................................................................... 126 



www.manaraa.com

 
 

viii 
 

 
Figure 33. Rps14 haploinsufficiency induces NLRP3 inflammasome activation 
 in erythroid progenitors but not HSPC .......................................................... 138 
 
Figure 34. Rps14 haploinsufficient erythroid progenitors predominantly undergo 
 pyroptotic cell death ..................................................................................... 141 
 
Figure 35. ROS and β-catenin activation are markedly increased in erythroid 
 progenitors in the context of Rps14 haploinsufficiency ................................ 144 
 
Figure 36. Concurrent loss of mDia1 and miR-146a results in pyroptotic cell 
 death of erythroid progenitors ...................................................................... 146 
 
Figure 37. ROS and β-catenin activation are significantly increased with dual 
 loss of mDia1 and miR-146a ........................................................................ 148 
 
Figure 38. NLRP3 inflammasome inhibition restores effective erythropoiesis in 
 patients with del(5q) MDS ............................................................................ 149 
 
Figure 39. The percentage of plasma ASC specks increases with protein  
 concentration ................................................................................................ 159 
 
Figure 40. ASC specks are significantly increased in MDS and may have 

prognostic value ........................................................................................... 161 
 
Figure 41. The percentage of glucose-adjusted, PB plasma-derived ASC specks 

is specific for MDS ........................................................................................ 165 
 
Figure 42. PB plasma-derived ASC specks are a response biomarker to 
 lenalidomide treatment ................................................................................. 167 
 
Figure 43. PB plasma-derived ASC specks are a response biomarker to  
 lenalidomide treatment in two independent data sets .................................. 169 
 
Figure 44. PB plasma-derived ASC specks remain unchanged after response to 

ESA or HMA therapy .................................................................................... 170 
 
Figure 45. NLRP3 inflammasome activation is a pathobiological driver of many  
 inflammatory conditions and diseases of major health concern ................... 180 
 
Figure 46. NLRP1 inflammasome formation and activation is significantly 

increased in MDS BM-MNC ......................................................................... 195 
 
Figure 47. S100A9 induces NLRP1 inflammasome formation in U937 cells and 

normal BM-MNC ........................................................................................... 196 
 



www.manaraa.com

 
 

ix 
 

Figure 48. ER stress triggers NLRP3 activation, leading to mitochondrial 
dysfunction and activation of the NLRP3 inflammasome complex ............... 200 

 
  



www.manaraa.com

 
 

x 
  

 
 
 
 
 

ABSTRACT 

Note: Portions of this abstract have been previously published in the journal Blood, 
Basiorka et al. Blood. 2016 Oct 13, and has been reproduced in this manuscript with 
permission from the publisher. 
 

Myelodysplastic syndromes (MDS) are genetically diverse hematopoietic stem 

cell malignancies that share a common phenotype of cytological dysplasia, ineffective 

hematopoiesis and aberrant myeloid lineage maturation. Apoptotic cell death 

potentiated by inflammatory cytokines has been considered a fundamental feature of 

MDS for over two decades. However, this non-inflammatory form of cell death cannot 

account for the inflammatory nature of these disorders. We report that a hallmark of 

lower-risk (LR) MDS is activation of the NLRP3 inflammasome, which drives clonal 

expansion and pyroptosis, a caspase-1-dependent programmed cell death induced by 

danger-associated molecular pattern (DAMP) signals. Independent of genotype, MDS 

hematopoietic stem and progenitor cells (HSPC) overexpress pyroptosis-related 

transcripts, inflammasome proteins and manifest activated NLRP3 inflammasome 

complexes that direct caspase-1 activation, IL-1β and IL-18 maturation and pyroptotic 

cell death. Using the S100A9 transgenic (S100A9Tg) mouse model that phenocopies 

human MDS, we demonstrated that forced expression of S100A9 was sufficient to drive 

pyroptosis in vivo, implicating pyroptosis as the principal mechanism of HSPC cell death 

in S100A9Tg mice. The lytic cell death releases intraceullar contents that include 

alarmins and catalytically active ASC specks, which can propagate bystander 
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inflammation. Notably, MDS mesenchymal stromal cells (MSC) and stromal-derived 

linages were found to predominantly undergo pyroptosis, with marked activation of 

caspase-1 and NLRP3 inflammasome complexes. These findings may account for the 

clusters of both HSPC and stromal cell death previously described in the bone marrows 

of patients with MDS. 

Mechanistically, pyroptosis is triggered by the alarmin S100A9 that is found in 

excess in MDS HSPC and bone marrow (BM) plasma. Further, both somatic gene 

mutations and S100A9-induced signaling activate NADPH oxidase (NOX), generating 

reactive oxygen species (ROS) that initiate cation influx, cell swelling and β-catenin 

activation. Accordingly, ROS and active β-catenin were significantly increased in MDS 

BM mononuclear cells (BM-MNC) and S100A9Tg mice compared to normal controls, as 

well as in human cell lines harboring gene mutations and in murine models of gene 

mutation knock-in or gene loss. ROS and β-catenin nuclear translocation were 

significantly reduced by NLRP3 or NOX inhibition, indicating that S100A9 and somatic 

gene mutations prime cells to undergo NOX1/4-dependent NLRP3 inflammasome 

assembly, pyroptosis and β-catenin activation. Together, these data explain the 

concurrent proliferation and inflammatory cell death characteristic of LR-MDS.   

 Given that loss of a gene-rich area in del(5q) disease results in derepression of 

innate immune signaling, we hypothesized that this genetic deficit would trigger 

assembly of the NLRP3 inflammasome complex, akin to the pathobiological mechanism 

characteristic of non-del(5q) MDS. To this end, we utilized two distinct murine models of 

del(5q) disease, namely in the context of Rps14 haploinsufficiency and concurrent loss 

of mDia1 and microRNA (miR)-146a. In both models, pyroptosis was not evident in the 
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HSPC compartment; however, early erythroid progenitors displayed high fractions of 

pyroptotic cells. This was associated with significant increases in caspase-1 and NLRP3 

inflammasome activation, ROS and nuclear localization of β-catenin, which was 

extinguished by inflammasome or NOX complex inhibition. These data suggest that 

early activation of the inflammasome drives cell death and prevents terminal maturation 

of erythroid precursors, accounting for the progressive anemia characteristic of del(5q) 

disease, whereby hematopoietic defects are primarily restricted to the erythroid 

compartment. Importantly, these data implicate a similar pathobiological mechanism in 

del(5q) MDS as is observed in non-del(5q) patients. 

 The identification of the NLRP3 inflammasome as a pathobiological driver of the 

LR non-del(5q) and del(5q) MDS phenotype allows for novel therapeutic agent 

development. Notably, knockdown of NLRP3 or caspase-1, neutralization of S100A9, 

and pharmacologic inhibition of NLRP3 or NOX suppresses pyroptosis, ROS generation 

and nuclear β-catenin in MDS, and are sufficient to restore effective hematopoiesis. In 

del(5q) murine models, inhibition of the NLRP3 inflammasome significantly improved 

erythroid colony forming capacity by a mechanism distinct from that of lenalidomide, 

highlighting the translational potential for targeting this innate immune complex in this 

subset of MDS. Thus, alarmins and founder gene mutations in MDS license a common 

redox-sensitive inflammasome circuit, which suggests new avenues for therapeutic 

intervention. 

Furthermore, aggregated clusters of the NLRP3 adaptor protein ASC [apoptosis-

associated speck-like protein containing a caspase activation and recruitment domain 

(CARD)] are referred to as ASC specks. During pyroptosis, ASC specks are released 
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from dying cells and function as DAMP signals that propagate inflammation. In this way, 

specks are a surrogate marker for NLRP3 inflammasome activation and pyroptotic cell 

death. Given that pyroptosis is the predominant mechanism of cell death in MDS and 

ASC specks are readily quantified by flow cytometry, we hypothesized that BM or 

peripheral blood (PB) plasma-derived ASC specks may be a biologically rational 

biomarker for the diagnosis of MDS.  

The percentage of ASC specks were significantly increased in MDS BM plasma 

compared to normal, healthy donors, which was validated by confocal microscopy. PB 

plasma-derived ASC specks were significantly greater in LR- versus HR-MDS, 

consistent with the greater extent of cell death and myeloid-derived suppressor cell 

(MDSC) expansion in LR disease. As hyperglycemia induces NLRP3 inflammasome 

activation, plasma glucose levels were measured to adjust for this confounding variable. 

Subsequently, the percentage of glucose-adjusted, PB plasma-derived ASC specks 

was measured in a panel of specimens of varied hematologic malignancies. The 

corrected percentage of ASC specks was significantly increased in MDS compared to 

normal donors and to each other malignancy investigated, including other myeloid and 

lymphoid leukemias, myeloproliferative neoplasms and overlap syndromes, like chronic 

myelomonocytic leukemia (CMML). These data indicate that the glucose-adjusted ASC 

speck percentage is MDS-specific and may be a valuable diagnostic biomarker. At a 

cutoff of 0.039, the biomarker minimizes misclassification error and achieves 95% 

sensitivity and 82% specificity in classifying MDS from normal donors, other 

hematologic malignancies and T2D. Lastly, the biomarker declined with treatment 

response to lenalidomide in LR-MDS patients, but not to erythropoietin stimulating agent 
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(ESA) or hypomethylating agent (HMA) therapy. As such, the percentage of ASC 

specks represents the first biologically rational, diagnostic biomarker for MDS that can 

be implemented with current diagnostic practices to reduce diagnostic error.  
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CHAPTER 1 

Background 

 

Myelodysplastic Syndromes (MDS) 

 

MDS Overview. Myelodysplastic syndromes (MDS) are hematopoietic stem cell 

malignancies characterized by ineffective hematopoiesis with marked genetic 

heterogeneity.1-3 These disorders are clonal in nature, with the affected precursor cell 

restricted to the erythroid, myeloid and megakaryocytic lineage.2 Resultant peripheral 

blood cytopenias demonstrate aberrant myeloid differentiation leading to dysplastic and 

ineffective blood production.4,5 Though prevalence is likely under-reported, MDS occur 

in approximately 3 or 4 individuals per 105, with a significant over-representation of 

males.6-8 No significant differences are observed with respect to race, though individuals 

of white decent are more frequently affected.6  

Although MDS cases are largely sporadic, rare familial clusters have been 

reported. To date, four familial syndromes predisposing to MDS have been described.9 

Inherited germline mutations in the RUNX1 or CEBPA genes, as well as partial or 

complete loss of chromosome 7 have been implicated in familial predisposition.10-14 

Additionally, though incidence is quite rare, childhood cases of MDS are typically 

associated with congenital disorders and underlying bone marrow failure 

syndromes.15,16 Karyotypic abnormalities are found in approximately 55% of primary 
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childhood cases, with monosomy 7 most commonly detected.17      

Etiology of MDS. To date, a holistic understanding of MDS etiology remains 

problematic. This can be attributed to a number of factors, including the lack of true 

MDS cell lines and inadequate animal models, slow growth of primary cells in culture 

and conflict over disease classification.4,18,19 Nevertheless, a number of predisposing 

factors are recognized. Incidence increases dramatically with age, suggesting that age 

may be the greatest risk factor for MDS development.20 Individuals 80 years and older 

have a five-fold greater likelihood for development of MDS than individuals ages 60-69, 

with a median age of 77 years at diagnosis.6-8 Moreover, whereas 85-90% of cases 

arise de novo, 10-15% of MDS cases occur in individuals who have received prior 

radiation or chemotherapy.20-22 These secondary or treatment-related cases are 

associated with poorer prognosis owing largely to the over-representation of 

unfavorable karyotypes. 

Additionally, MDS may arise secondary to prolonged environmental or 

occupational exposures to organic solvents, including benzene or other petrochemicals 

and genotoxic agents such as pesticides, fertilizer and others.20 In a meta-analysis of 10 

case-control studies, cigarette smoking was significantly associated with MDS, with an 

odds ratio of 1.45, or a 45% increase in risk.23 In a similar meta-analysis, when alcohol 

consumption was assessed in 5 case-control studies, the overall association of 1.31 

was not significant.23 Furthermore, in a prospective lifestyle study, obese individuals 

were shown to have a 2.2-fold greater risk for MDS development, illustrating a positive 

correlation between body mass index and MDS.24 These findings suggest that smoking 

and obesity, but not alcohol consumption, play a role in MDS pathogenesis. 
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Both MDS and AML occur with greater frequency in individuals with a history of 

chronic infection and/or autoimmune disease, raising the notion that immune disruption 

precedes MDS/AML development.25 As is true of childhood cases, individuals with 

congenital diseases or bone marrow failure conditions are also at heightened risk for 

MDS development.9,16  

Moreover, clonal drifts in hematopoietic stem cell (HSC) lineage distribution, 

namely myeloid skewing at the expense of lymphoid HSC, are associated with lymphoid 

senescence and enriched myelopoiesis with normal aging.26-28 During aging, stem cell 

functionality diminishes with respect to quiescence, self-renewal, differentiation and 

immune function, as a result of inflammatory cytokines, oxidative stress, DNA damage 

and telomere erosion.27 As MDS are characterized by a defect in the myeloid-HSC 

compartment leading to aberrant myeloid maturation, senescence-dependent 

accumulation of alternations in hematopoietic stem and progenitor cells (HSPC), as well 

as cells of the surrounding microenvironment, may contribute to MDS pathogenesis and 

stem cell dysfunction. For instance, telomeres are shorter in MDS compared to normal 

donors, resulting in part from the high proliferative fraction of HSPC in MDS.29 Patients 

who reported prior exposure to known etiologic environmental factors had significantly 

reduced telomeres in myeloid cells than unexposed persons.29  

MDS Classification. The vast degree of disease heterogeneity, both clinical and 

molecular, has warranted categorization of MDS into distinct, recognizable subtypes. 

Prior to the 1970s, what is now known as MDS was regarded as a preleukemic 

condition.30 Patients with “preleukemia,” though at increased risk of leukemic 

transformation, did not always develop myeloid leukemia, and so the term 
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“myelodysplastic disease” was suggested instead.31 In the early 1970s, the French-

American-British (FAB) Co-operative Group formed in an attempt to classify the acute 

and chronic leukemias. The seven members of the FAB described two “dysmyelopoietic 

syndromes,” refractory anemia with excess blasts (RAEB) and chronic myelomonocytic 

leukemia (CMML) in their first publication in 1976.32 It became apparent that these 

designations did not readily differentiate the dysmyelopoietic syndromes, or 

myelodysplastic syndromes, from acute myeloid leukemia (AML), illustrating the need 

for a new approach that would provide greater distinction between MDS subtypes.  

In 1982, the FAB published a new proposal for MDS classification which was 

largely based on morphology and the percentage of blasts within the bone marrow (BM) 

and peripheral blood (PB). In total, five morphological subtypes of MDS were 

recognized, including refractory anemia (RA), RA with ringed sideroblasts (RARS), RA 

with excess blasts (RAEB), RAEB ‘in transformation’ and CMML.33 The addition of 

RAEB in transformation prompted adjustment of AML diagnostic criterion from 50% 

blasts to at least 30%. Though the FAB acknowledged that these classification criteria 

did not precisely stratify MDS, it would serve as the precedent for nearly twenty years.   

As understanding of the biological, molecular, immunophenotypical and clinical 

features of MDS pathobiology increased, so did the need for a new classification 

approach. In 2001, the World Health Organization (WHO) proposed an updated 

classification system for myeloid neoplasms, including MDS.34 Definitions of RA and 

RARS were refined. A new subtype was added, namely refractory cytopenia with 

multilineage dysplasia (RCMD), which when combined with the presence of ringed 

sideroblasts would be called RCMD-RS and offered prognostic refinement. RAEB was 



www.manaraa.com

 
 

5 

divided into two separate entities, RAEB-1 when bone marrow blast percentage was 

between 5-9% and RAEB-2 with blasts between 10-19%. RAEB in transformation was 

removed, and the AML diagnostic criterion was again lowered to 20% or more 

peripheral blood or bone marrow blasts. CMML was reclassified as a 

myelodysplastic/myeloproliferative disease (MDS/MPN), or a condition with overlapping 

features of both hematologic malignancy types. Lastly, the 5q- syndrome was 

recognized as the first and only cytogenetically defined MDS subtype, characterized by 

an interstitial deletion between q21 and q32 of chromosome 5.34,35  

In 2008, the WHO published a revision of its MDS classification system.36 The 

previously separated RCMD-RS subtype was now captured under RCMD because of 

overlapping outcomes. Perhaps the greatest change was the creation of a new, over-

arching subtype called refractory cytopenia with unilineage dysplasia (RCUD). This 

includes patients with RA, and those with refractory neutropenia (RN) and refractory 

thrombocytopenia (RT). Finally, the WHO recently revised this classification early in 

2016.37 While focus in the 2016 revision remains on the percentage of blasts and the 

extent of dysplasia, changes in subtype nomenclature reflect that identifying the specific 

cytopenic lineage is not central to accurate classification.37 Furthermore, cytogenetic 

abnormalities deemed MDS-defining remain unchanged from the previous revision. 

While identification of the MDS mutanome has expanded dramatically in the last 

decade, this updated version does not incorporate mutational information into 

classification with the sole exception of SF3B1, perhaps foreshadowing what can be 

expected in the next WHO revision.37 A summary of the FAB and WHO classification 

systems is outlined in Table 1. As understanding of MDS pathobiology continues to 
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expand with novel findings and accumulating molecular insight, our understanding of 

these complex disorders will continue to be refined.   

MDS Prognostication. Inasmuch as patients exhibit clinical and molecular 

heterogeneity, they too exhibit vast prognostic variation. Therefore, it became 

imperative to establish a consensus prognostic scoring system that could stratify 

patients into distinct risk groups and ultimately guide therapy selection. In 1997, the 

International Prognostic Scoring System (IPSS) was established.38 The IPSS is based 

on three independent variables that significantly impact disease outcome with respect to 

risk of leukemic transformation and survival in patients with de novo MDS, namely 

cytogenetic anomalies, BM blast percentage and number of cytopenias.38 Each variable 

is given a particular weighted score, whose sum yields a cumulative score 

representative of risk. The IPSS stratifies patients into four distinct risk groups: low, 

intermediate-1, intermediate-2 and high risk. Patients of low and intermediate-1 risk 

collectively represent lower-risk disease, and intermediate-2 and high risk patients 

collectively represent higher-risk MDS. Though the IPSS served as the fundamental 

scoring system for over two decades, it was not without limitations. 

The revised IPSS (IPSS-R), published in 2012, aimed to address the 

shortcomings of the initial system while incorporating the potential prognostic impact of 

novel clinical and cytogenetic findings.39 Although the core variables remained the 

same, refinements were made. Less common cytogenetic abnormalities were now 

included and the BM blast category was further repartitioned. Whereas less weight was 

given to the number of cytopenias in the IPSS, the IPSS-R recognizes the severity of 

cytopenias by establishing clinically relevant cutpoints. Taken together, the IPSS-R 



www.manaraa.com

 
 

7 

Table 1. Overview of the FAB and WHO classification systems for MDS. 
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recognizes five distinct risk groups, specifically very good, good, intermediate, poor and 

very poor. As history has demonstrated with respect to both classification and prognosis 

of MDS, improved understanding of MDS biology will likely necessitate further 

refinement of the IPSS-R. A summary of the IPSS and IPSS-R can be found in Table 2. 

Notably, both the IPSS and IPSS-R models stratify MDS patients at the time of 

diagnosis, illustrating a key limitation. In order to account for excluded patient 

populations, including patients with secondary MDS and those who have previously 

been treated, the MD Anderson Global Prognostic Scoring System (MDGPSS) was 

created.40 This model, applicable to patients at any time during the course of their 

disease, was shown to add prognostic value to the IPSS. The MDGPSS includes 

variables not considered in the IPSS or IPSS-R, including age, performance status and 

prior transfusion requirement.40 Like the IPSS, the MDGPSS stratifies patients into low, 

intermediate-1, intermediate-2 and high risk. 

In solid tumors, the presence of a comorbidity significantly impacts therapeutic 

selection as well as overall survival.41 Comorbid conditions are strikingly common 

amongst individuals with MDS,8 though none of the aforementioned prognostic systems 

consider the impact of comorbidities on prognosis. Use of the Adult Comorbidity 

Evaluation-27 (ACE-27) index, demonstrated that overall survival decreased with 

increasing severity of comorbid conditions, prompting the creation of a novel prognostic 

model.42 Three variables, namely age, IPSS and baseline comorbidities, segregate 

patients into low, intermediate or high risk disease.42 In a similar analysis, the 

consideration of comorbid conditions at the time of diagnosis was shown to add to the 

prognostic value of the IPSS-R.43 
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Table 2. IPSS and IPSS-R scoring systems for MDS risk stratification. 

 

 
At the present time, the IPSS-R is the most commonly employed model in the 

hematology clinic at the H. Lee Moffitt Cancer Center and Research Institute. 

Nevertheless, the majority of research investigations utilize the IPSS. Typically patients 
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will be grouped into lower-risk (low and intermediate-1) versus higher-risk (intermediate-

2 and high) disease for therapeutic trials.  

MDS Treatment. Historically, treatment for MDS has largely been empirical. 

Unfortunately, response rates and durations of response are often limited. While three 

therapies have been FDA-approved for MDS to date,44-46 regrettably no novel therapies 

have been approved in over ten years. As the age of the American population is 

increasing, there is a projected increase in burden of all age-related disorders, including 

MDS, and consequently a heightened necessity for novel treatment approaches.47 The 

lack of effective therapeutic strategies in MDS can be attributed to deficiencies in our 

understanding of the underlying molecular mechanisms that contribute to disease 

initiation and progression, underscoring the importance of developing biologically 

rational therapies aimed at targets relevant to disease pathobiology that will surpass the 

standards of care available today. Presently, clinicians use a risk-adapted approach to 

therapy, whereby therapy selection is made following IPSS-R-guided determination of 

disease prognosis.5 Generally, the treatment goal for lower-risk disease is to improve 

quality of life by managing cytopenias and symptoms. A more aggressive approach is 

used in higher-risk patients, whereby efforts are made to reduce risk of AML 

transformation and increase survival. A summary of therapeutic approaches in MDS can 

be found in Table 3.  

Notably, the only curative treatment for patients with MDS, irrespective of risk 

group, is allogeneic stem cell transplantation (alloSCT).48,49 Unfortunately, 

transplantation is associated with high morbidity and mortality, and few patients are 

suitable candidates given their late age and the frequent presence of comorbidities. 
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Nevertheless, transplantation approaches are being refined to expand patient eligibility, 

improve survival and reduce the risk of relapse following alloSCT.48-50  

Treatment of lower-risk patients. With respect to clinical manifestations, 

treatment of anemia remains a principal challenge. The majority of patients present with 

anemia, and 80-90% will require frequent red blood cell transfusions at some point 

during the course of the disease.51 Transfusion-dependence does have negative 

implications, including poorer overall survival, increased risk of AML transformation and 

iron overload, which results in significant morbidity and mortality.51 As an alternative to 

frequent transfusions, growth factor support like erythroid stimulating agents (ESAs) has 

been employed. Recombinant human erythropoietin (Epo) has proven effective in 

improving red cell production in a subset of patients with low serum erythropoietin level 

and transfusion-burden. Response rates range from approximately 25% to 60% 

depending on the study population.52-55 Though Epo has been the standard of care 

since the early 1990s, it has yet to gain FDA approval.56 Additionally, in an attempt to 

augment response to Epo, others have combined Epo treatment with granulocyte- or 

granulocyte-macrophage colony stimulating factors (G-CSF/GM-CSF).57 However, a 

meta-analysis revealed no significant response benefit of either combination therapy 

over Epo therapy alone.58 

Moreover, increasing evidence suggesting that immune dysfunction contributes 

causally to aberrant hematopoiesis in MDS has encouraged use of immunosuppressive 

therapies (IST), including cyclosporine A and antithymocyte globulin (ATG).59,60 

Lenalidomide, an immune modulating but not IST, is a second-generation 

immunomodulatory drug (IMiD). In 2005, the FDA approved lenalidomide for the 
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Table 3. Standard and investigational therapeutic approaches for the treatment of MDS. 

 

treatment of transfusion-dependent, lower IPSS risk patients with a chromosome 5q 

deletion [del(5q)].45 This subset of patients, who typically responds poorly to Epo 

treatment, has remarkable response rates to lenalidomide. Approximately 76% of 

patients respond to therapy, 67% become transfusion-independent and 45% achieve a 

complete cytogenetic remission, illustrating that lenalidomide suppresses the del(5q) 

clone.45 In a phase 2 study of lenalidomide in non-del(5q) MDS, approximately 46% of 

patients responded with 26% becoming transfusion-independent.61 These findings 
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suggest lenalidomide may benefit a subset of non-del(5q) patients who fail ESA 

therapy.61  

To date, the landscape of novel therapeutic strategies is enriched with 

approaches aimed at inhibiting dysregulated innate immune pathways. For a number of 

novel agents, promising pre-clinical data has warranted further investigation in clinical 

trials. The selective inhibition of IDO1, an enzyme involved in tryptophan catabolism and 

immune modulation, with INCB024360 can reduce regulatory T cell expansion and 

myeloid-derived suppressor cell (MDSC) activity while concurrently increasing T cell 

proliferation.62 A phase II study of this agent has recently completed. Aberrant 

overactivation of the SMAD/TGF-β axis has led to a number of phase II clinical trials, 

including the use of a TGF-β ligand trap receptor and a TGF-β receptor 1 kinase 

inhibitor.63-65 A humanized Toll-like receptor (TLR2) antibody is currently in a phase II 

study. Expression of TLR2 is up-regulated 37-fold in CD34+ BM mononuclear cells (BM-

MNC).66,67 Lastly, a dual p38 MAPK/Tie2 inhibitor has completed phase I testing, with 

approximately 32% of patients responding.68 Undoubtedly, the innate immune era 

affords great promise for improved therapeutic strategies that may lead to durable 

responses and ideally cures.  

Treatment of higher-risk patients. Prior to the mid-2000s, conventional care for 

higher-risk patients included supportive therapy, like transfusions or growth factor 

support, low-dose cytarabine or intensive chemotherapeutic regimens that mirrored 

those employed in de novo AML. Though complete responses to intensive 

chemotherapy range from 40-60%, they are neither durable nor curative.69,70 Moreover, 
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elderly patients, who represent the majority of MDS cases, poorly tolerate these 

aggressive regimens, evidenced by relatively high toxicity-related mortalities.70 

A major advancement in higher-risk therapy came with the understanding that 

DNA in MDS is largely hypermethylated, encouraging preclinical studies of 

hypomethylating agents (HMAs), or azanucleosides.71 In 2004 and 2006, the FDA 

approved the use of 5'-azacytidine and its analog decitabine, respectively, for the 

treatment of MDS.46,72 Patients treated with these therapies demonstrate more durable 

responses, increased median time to AML transformation, and most importantly in the 

case of azacitadine, increased overall survival.46,72-74 Given the survival benefit of 

azanucleoside therapy, these agents represent the standard of care for higher-risk 

patients, but interestingly impart no survival advantage to patients of lower-risk disease. 

For higher-risk patients, novel therapeutic strategies are largely aimed at 

imparting benefit to patients who have failed azanucleoside therapy, or identifying 

therapies that may be used in combination with hypomethylating agents. Nucleoside 

analogues, including clofarabine and sapacitabine, have completed phase I clinical 

testing.75-77 These cytotoxic agents demonstrated efficacy in refractory patients, 

warranting further investigation as single agents or in combination therapy. As an 

alternative to HMAs, and also in conjunction with HMA treatment, histone deacetylase 

(HDAC) inhibitors have been investigated as a means of modulating aberrant epigenetic 

alterations in MDS. The phase I and II data have yielded encouraging response rates, 

whereas randomized phase II and III trials have been disappointing.78-80 Rigosertib, a 

kinase inhibitor with multiple targets, including polo-like kinase 1 (PLK1), also has 

clinical activity in HMA resistant patients.81 Moreover, molecular alterations in the FLT3 
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and RAS genes are associated with poor overall survival, increased risk of AML 

transformation and poor response to standard therapies.82 As these mutations are 

readily targetable, investigations into FLT3-specific and MAPK pathway inhibitors in 

higher-risk patients are warranted and underway. Lastly, immune checkpoint receptors 

and ligands CTLA4, PD-1, PD-L1 and PD-L2, which function to attenuate the immune 

response, have been shown to be overexpressed in MDS, possibly contributing to the 

suppressive bone marrow milieu observed in these disorders.83 Notably, treatment with 

hypomethylating agents increases expression of these checkpoint receptors, suggesting 

use of blocking antibodies not only as single-agent therapies, but in combination with 

standard therapeutic approaches.83  

Molecular and Cytogenetic Alterations. In the last decade, understanding of 

the breadth and type of genetic lesions present in MDS has rapidly expanded, due in 

part to advances in sequencing technology and computational approaches aimed at 

managing large data sets. These data have illustrated that molecular and cytogenetic 

alterations are common and often complex, owing to chromosomal abnormalities, 

somatic gene mutations and epigenetic alterations. The vast molecular heterogeneity 

evident in MDS imparts biological and clinical heterogeneity in these disorders, both 

illustrating that genotype directly affects phenotype and contributing to the premise that 

multiple mechanisms of pathogenesis culminate in the MDS phenotype.84 

Cytogenetic alterations are critical in guiding diagnosis, prognosis and treatment 

selection in MDS, as the IPSS and IPSS-R both consider the type and clinical impact of 

specific karyotypic abnormalities.38,39 Frequently observed genetic lesions include 

inversions, deletions, gains or losses of whole chromosomes and copy number 
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alterations. Approximately 50% of de novo patients and up to 80% of secondary or 

treatment-related MDS patients present with a karyotypic anomaly.85 With the exception 

of isolated 5q and 20q deletions, the presence of cytogenetic alterations negatively 

impacts survival, as overall survival drops dramatically from 53 months in individuals 

with a normal karyotype, to 17 months in those with 3 distinct lesions and just 9 months 

in those with 4 or more changes.85  

Moreover, somatic mutations have been discovered in a wide range of genes 

and gene classes, including splicing factors, epigenetic regulators, transcription factors, 

growth factor signaling kinases and others, illustrating profound diversity. In the last five 

years, three groups sought to determine the impact of mutations on disease outcome in 

an effort to further improve prognostic discrimination.86-88 The presence of one or more 

somatic mutations was observed in 78-89.5% of patients, with a median of three per 

patient.87,88 Genes most frequently found mutated included SF3B1, TET2, SRSF2, 

ASXL1, DNMT3A, RUNX1 and U2AF1.87,88 Notably, a trend was observed in the 

temporal order of acquisition of somatic mutations, namely mutations in splicing factors 

and epigenetic regulators occurring earlier and those in transcription factors and 

signaling kinases occurring later with disease progression.87,88 The temporal order and 

approximate frequency of common MDS somatic mutations is summarized in Figure 1. 

Of interest, significant correlations were observed between specific mutations, 

demonstrating not only that the presence of a mutation matters, but that the specific 

combination imparts functional differences that can uniquely affect disease 

pathobiology.88 Moreover, analysis of variant allele frequencies (VAFs) showed that 

while 62% of patients had clonal mutations, as much as 34-48% had subclonal 
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Figure 1. Temporal order and frequency of recurrent somatic gene mutations in MDS. 
Somatic mutations in splicing factor genes and epigenetic regulator genes are 
commonly observed earlier in MDS disease progression, whereas mutations in 
transcription factor and signaling kinase genes typically occur later. The percentage 
next to each gene designates the mutation frequency observed in MDS.  
 

mutations indicative of intratumoral heterogeneity.87,88 In patients with higher-risk 

disease, the mean number of mutations per patient is typically increased, and these 

individuals display greater mutational diversity, increasingly complex clonal architecture 

and worse overall survival.88 These findings support the notion that transformation of 
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MDS to AML is associated with clonal evolution, marked by the acquisition of additional, 

advantage-conferring mutations and clonal selection in favor of survival.89 

These studies demonstrated that the presence of a mutation in select genes 

independently added prognostic value to the IPSS and IPSS-R, illustrating potential 

clinical utility.86-88 However, recent reports have indicated that the frequency of pre-

malignant, clonal hematopoiesis in the normal population can be quite high and clearly 

senescence-dependent.90 This age-related clonal expansion results predominantly from 

the acquisition of somatic gene mutations commonly detected as founder mutations in 

MDS and AML, including DNMT3A, TET2 and ASXL1.90 Whereas mutations were 

nearly undetectable in younger patients (ages 40 years or below), 5.6% of persons 60-

69 years of age, 11.7% of persons 80-89 years of age, and 18.4% of persons 90 years 

or older carried mutations by next-generation gene sequencing (NGS).90 This 

phenomena, namely clonal hematopoiesis resulting from a myeloid malignancy-

associated somatic gene mutation, occurs in otherwise hematologically normal 

individuals, and has since been named clonal hematopoiesis of indeterminate potential 

(CHIP).91 Persons with CHIP have 11.1-fold increased risk of developing a hematologic 

malignancy, as well as increased risk of type 2 diabetes, cardiovascular disease and all-

cause mortality.90 Only a small percentage of persons with CHIP progress to a 

hematologic neoplasm, like MDS or AML.90,91 Until additional studies are performed to 

understand the longitudinal effects of CHIP on outcome, the inclusion of mutation-based 

criteria into the IPSS or IPSS-R is unlikely.92 Nevertheless, evaluation of somatic gene 

mutations can help guide prognostication and offer insight into otherwise challenging 

diagnoses.  
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Aberrant Immune Activation in MDS 

 

Autoimmune Disease and Infection. Sustained immune activation is 

recognized to increase the risk of hematologic malignancy. Accordingly, the literature 

supports a link between MDS and a number of inflammatory conditions.93 For one, the 

presence of an autoimmune disorder significantly increases the risk of developing both 

MDS and AML.94 As many as 30% of MDS cases occur concomitantly with autoimmune 

disorders.95 MDS-associated rheumatoid arthritis and inflammatory bowel disease have 

been reported and precede development of MDS in approximately 55% of cases.94,96 

Moreover, history of a board range of infections, including pneumonia, upper respiratory 

tract infection and sinusitis, significantly increases MDS and AML risk.25 When a latency 

analysis was performed to assess the contribution of infection three years prior to MDS 

or AML diagnosis, many infections retained significance.25 Together, these data suggest 

that selective pressures associated with chronic inflammation related to infection and 

autoimmune conditions favor emergence of somatic mutations in HSPC, creating a 

fertile milieu for leukemogenesis and the development of MDS and AML. It is therefore 

likely that immune perturbations antecede the emergence of MDS.   

Cytokine, Chemokine and Growth Factor Profile. MDS peripheral blood and 

bone marrow are marked by aberrant expression of inflammatory cytokines, 

chemokines and growth factors. Generally, lower-risk patients demonstrate marked up-

regulation of pro-inflammatory mediators whereas immunosuppressive signals dominant 

higher-risk disease.97 Increased interferon gamma (IFN-γ) gene expression is 

detectable in approximately 42% of MDS cases, with a significant overabundance of 
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cytokine expression within sera.97,98 Additionally, cytokines essential for T cell 

activation, differentiation and proliferation, including IL-12 and IL-7, are significantly 

increased in lower-risk sera, as well as the chemokine CCL5 important for lymphocyte 

chemotaxis.97 Approximately 40% of early-stage MDS patients evidence significantly 

greater secretion of the pro-inflammatory cytokine IL-1β within the bone marrow, which 

correlates positively with the degree of cell death.99 MDS stromal cells not only express 

increased levels of IL-1β, IL-6 and G-CSF mRNA, but produce mature IL-1β and IL-6 

basally without exogenous stimulation,100 illustrating a pathobiologic contribution of the 

bone marrow microenvironment. Notably, expression of pro-angiogenic factors in solid 

tumors is often associated with advance stage disease and poor prognosis. In MDS, 

increased plasma levels of vascular endothelial growth factor (VEGF) and angiogenin 

(ANG) positively correlate with disease risk, suggesting a role in disease progression.101 

Moreover, TNFα gene expression is increased in approximately 79% of cases, with a 

corresponding increase in the cytokine within the bone marrow.98 Not only are TNFα 

levels increased in higher-risk patients, but this up-regulation correlates with lower 

complete response rates and reduced survival.102 Other inhibitory cytokines, including 

IL-10 and the soluble IL-2 receptor, are also increased in the sera of higher-risk 

patients,97 and the myelosuppressive cytokine TGF-β1 is increased in both PB plasma 

and the BM milieu.103  

Overview of TLR Signaling. Pattern recognition receptors (PRRs) represent a 

class of germline-encoded receptors recognizing both microorganism- and host-derived 

danger signals, or pathogen-associated molecular patterns (PAMPs) and danger-

associated molecular patterns (DAMPs), respectively.104,105 The PRR family can 
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generally be divided into four receptor subfamilies. Two subfamilies, the Toll-like 

receptors (TLRs) and C-type lectin receptors (CLRs), are transmembrane, whereas the 

other two reside cytoplasmically, namely the NOD-like receptors (NLRs) and the 

Retinoic acid-inducible gene (RIG)-I-like receptors (RLRs).104 Activation of PRRs results 

in activation of the innate immune response via a coordinated and fine-tuned 

inflammatory signal.  

Undoubtedly, the TLRs are among the best-characterized PRR family, with ten 

members identified in humans.104,105 Cellular localization of the TLRs is divided between 

the plasma membrane (TLR-1, 2 and 4-6) and endosomal compartments (TLR-3 and 7-

10), and DAMP and PAMP recognition varies between receptors.106 Signaling originates 

at the cytoplasmic Toll/IL-1R homology (TIR) domain of the TLR following receptor 

engagement. Subsequently, recruitment of specific adaptor proteins allows for modified 

and specific responses. In total, five adaptor proteins are recognized, namely myeloid 

differentiation primary response gene 88 (MyD88), TIR domain containing adaptor 

protein (TIRAP), TIR domain-containing adaptor-inducing interferon-β (TRIF), TRIF-

related adaptor molecular (TRAM) and Sterile-alpha and Armadillo motif containing 

protein (SARM).104,105  

Generally, TLR signaling can be divided into MyD88-dependent and TRIF-

dependent pathways, with the majority of TLRs utilizing the former mechanism, with the 

exception of TLR3.104,105 Notably, TLR4 signaling results in activation of both 

pathways.104 To start, MyD88 recruitment to the TIR domain results in a chain of events 

beginning with activation of interleukin-1 receptor-associated kinase 1 (IRAK1), then 

IRAK2.104 Following dissociation from MyD88, the IRAK members associate with TNFR-
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associated factor 6 (TRAF6), an E3 ubiquitin ligase.104 Downstream signaling from 

TRAF6 ensues, resulting in the activation and nuclear localization of nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-κB).104 Conversely, the TRIF-

dependent signaling pathway begins with recruitment of TRAF3 and TRAF6.104 While 

NF-κB will become activated downstream, this pathway also results in phosphorylation 

of interferon regulatory factor 3 (IRF3) and IRF7. Following dimerization, IRF3 and IRF7 

translocate into the nucleus and induce expression of type I interferons (IFNs).104 

Ultimately, activation of TLR signaling culminates in activation of NF-κB, the generation 

of pro-inflammatory cytokines, interferons and an organized immune response (Figure 

2).105  

TLR Signaling Dysregulation in MDS. The evidence supporting up-regulation 

and activation of TLR signaling in MDS is extensive and growing. Interestingly, chronic 

TLR4 signaling results in functional damage to long-term HSC.107 The impaired 

repopulating potential of these HSC reflects the stem cell exhaustion observed with 

aging and characterized by loss of quiescence and increased cycling causing HSC 

depletion, accompanied by expansion of the myeloid compartment at the expense of the 

lymphoid.107-109 Similar findings are evident with chronic IL-1β stimulation as well.110 

Such a phenotype is evident in MDS, suggesting TLR-driven aberrancies in 

hematopoiesis. Interestingly, normal BM-derived, CD34+ HSPC constitutively express 

TLR4 and TLR7-9, and stimulation of TLR7-8 actually skews differentiation of these 

cells along the myeloid lineage.111 Moreover, gene expression of TLR1, TLR2, TLR4 

and TLR6 is significantly increased in MDS BM-MNC, as well as protein expression of 

TLR2 and TLR4.67,112 Activation of TLR2 in CD34+ HSPC decreases erythropoietic 
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Figure 2. Overview of MyD88-dependent and TRIF-dependent TLR signaling 
pathways. With the exception of TLR3, all of the TLRs utilize MyD88-dependent 
signaling. (A) The TLRs located at the plasma membrane vary in the specific PAMPs 
and DAMPs they detect, as well as the adaptor proteins that are recruited to mediate 
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downstream signaling. (B) In MyD88-dependent signaling, MyD88 recruits and activates 
IRAK1 and IRAK2. (C) Following activation, IRAK1/IRAK2 dissociate and associate with 
TRAF6, an E3 ubiquitin ligase. (D) Once autoubiquitinated, TRAF6 recruits the IKK 
complex, consisting of IKKα, IKKβ and IKKγ. TAK1 will phosphorylate IKKβ, leading to 
phosphorylation and liberation of NF-κB from the IKK complex members. NF-κB 
translocates into the nucleus and induces transcription. (E) Activation of TAK1 results in 
MAPK signaling and the activation of a variety of transcription factors (TF), including 
AP-1, p38 MAPK and JNK. Subsequently, these TFs translocate into the nucleus and 
direct transcription. (F) TLR3, located within endosomal compartments, utilizes TRIF-
dependent signaling whereby TRAF3 and TRAF6 are recruited for activation. (G) 
Activation of TBK1 results in the activation of the IRF3 transcription factor and 
transcription. 
 

potential, as measured by colony forming capacity.67 Additionally, approximately 11% of 

MDS patients harbor a single nucleotide polymorphism (SNP) encoding a phenylalanine 

to serine amino acid substitution at position 217 of TLR2, resulting in enhanced NF-κB 

activation and signaling.67 Notably, protein membrane expression of TLR4 is 

significantly increased on MDS CD34+ cells, overall 92% greater than normal HSPC, 

and expression on BM-MNC correlates with the extent of apoptosis as measured by 

annexin-V positivity.112  

Comparative gene expression analyses of 84 TLR-related genes in BM-derived, 

CD14+ monocytes demonstrated that approximately 63% of these genes were 

significantly over-expressed in MDS compared to normal controls.113 Subsequent gene 

set enrichment analysis elucidated that up-regulated genes belonged to both the 

MyD88-dependent and -independent pathways, as well as TLR signaling adaptors and 

downstream pathway mediators, illustrating widespread network dysregulation.113 In 

accordance with these findings, while no mutations in MyD88 are demonstrable in MDS, 

increased gene expression has been shown in both BM-MNC and CD34+ HSPC.114 

Lower-risk patients have greater over-expression than those with higher-risk disease, 
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and this up-regulation directly correlates with reduced survival and diminished erythroid 

colony forming capacity.114 Additionally, the genomic regions harboring TIRAP and 

TRAF6, the downstream target of the IRAK1 kinase, are amplified in a subset of 

patients.115 Furthermore, approximately 10-30% of MDS cases manifest over-expressed 

and hyperactive IRAK1 adaptor protein.116 Silencing of IRAK1 by RNA interference or 

pharmacologic inhibition of the kinase resulted in reduced proliferation and colony 

forming capacity in MDS, illustrating the importance of this target in these disorders.116 

Notably, deletion of the long arm of chromosome 5 in patients with del(5q) MDS results 

in haploinsufficiency for a number of genes, including two microRNAs (miRNAs) within 

the commonly deleted region (CDR), namely miR-145 and miR-146a.117,118 These 

miRNA, which target TIRAP and TRAF6, respectively, are normally expressed in CD34+ 

HSPC and function to fine-tune the innate immune response.117 Loss of miR-145 and 

miR-146a recapitulates the del(5q) phenotype, elegantly demonstrating that aberrant 

activation of TLR- and innate immune-driven signaling has pathobiological effects in 

MDS.117  

Bone Marrow Microenvironment Abnormalities. Like hematopoietic stem 

cells, mesenchymal stromal cells (MSC) reside within the bone marrow whose stem cell 

component is characterized by multipotency, self-renewal and the ability to differentiate 

into cells of the adiopocytic, chondrocytic and osteocytic lineages (Figure 3).119 

Together, these cells constitute the BM microenvironment and fulfill the crucial function 

of supporting normal hematopoiesis.  

Undoubtedly, complex and dynamic interactions exist between cells of the 

hematopoietic and stromal lineages. Dysfunction in either dichotomy, namely the 
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Figure 3. Hierarchy of the mesenchymal lineage. Mesenchymal stem cells (MSC) 
propagate cells of the mesenchymal lineage through a number of differentiation 
pathways, like osteogenesis, stromagenesis, etc. The precursor cells of these pathways 
will terminally differentiate into mesenchymal cells, including osteocytes, stromal cells, 
chondrocytes, adipocytes, fibroblasts, myocytes and astrocytes. 
 

hematopoietic cells or the surrounding stroma, has implications for disease 

pathogenesis, as an abnormality in either typically translates to abnormalities in the 

other.84,120 For one, co-culture studies of the F-36P AML cell line with MDS-derived 

stromal layers illustrated the defective ability of the stroma to support hematopoiesis, as 

evidenced by increased cell death of the cell line.121 In a sophisticated animal model, 

disruption of the microenvironment was sufficient to initiate neoplastic change in a cell 

type of non-mesenchymal origin.122 Specifically, osteoprogenitor-specific deletion of 

Dicer1, an RNase III family endonuclease, resulted in myelodysplastic features with 

dysplasia, increased rate of transformation to AML and clonal genetic events in the 
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hematopoietic compartment.122 The role of the BM microenvironment in initiating 

disease was further supported by studies using the NUP98-HOXD13 (NDH13) animal 

model, which phenocopies MDS and is generated by hematopoietic cell-specific 

expression of the NUP98-HOXD13 transgene.123 Not only was the NDH13 stroma 

defective in supporting hematopoiesis, but transplantation of NDH13 BM-MNC into WT 

recipients resulted in increased survival and reduced leukemic transformation compared 

to transplantation into NDH13 transgenic recipients.123 These findings illustrate that 

normalizing the diseased BM microenvironment improves general hematopoietic 

function.123 Conversely, the instructive reprogramming of the microenvironment by 

MDS-derived BM-MNC has also been demonstrated.120 In the presence of MDS BM-

MNC, normal MSC actually acquire an abnormal phenotype, with features similar to 

MDS-derived MSC.120  

Not only are BM-derived MSC phenotypically and functionally abnormal in MDS, 

they are also genetically unstable.124 Germline genetic alterations in MSC have been 

described in MDS.125 Moreover, clonal chromosomal abnormalities in MSC have also 

been reported and confirmed in approximately 34% of MDS patients, and these are of 

distinct origin from the MDS clone.124 Patients harboring a clonal MSC abnormality have 

significantly reduced overall survival compared to those without MSC-specific genomic 

changes.126 Although the precise biological consequence of these genetic alterations is 

largely unknown, they confer neither a proliferative nor a survival benefit.124 

Overview of Hematopoiesis. Though largely regarded today as an 

oversimplification, hematopoiesis, or the process resulting in the formation of all types of 

blood cells, is typically depicted as a hierarchy (Figure 4). Hematopoietic stem cells 
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(HSC), found atop of the hematopoietic pyramid, reside within the bone marrow as a 

rare, and largely quiescent, multipotent cell population.127 HSC are characterized 

according to two unique attributes, namely the ability to self-renew, or generate 

additional HSC through cell division, and secondly, the ability to propagate all cells of 

the hematopoietic system.128 In a simplistic view, HSC give rise to slightly more 

differentiated progenitor cells, which then differentiate further along specific 

hematopoietic lineages into fully mature and terminally differentiated cells.128 In this 

way, self-renewal potential dramatically decreases as cell maturation increases. Two 

populations of HSC have been recognized, the long-term (LT-HSC) and short-term (ST-

HSC) hematopoietic-initiating cells which differ in their self-renewal ability. Perhaps self-

evident from their designation, LT-HSC retain life-long ability to reconstitute the 

hematopoietic system, whereas ST-HSC are more limited and can only do so short-

term.129 Therefore, LT-HSC give rise to ST-HSC, which then continue on to differentiate 

into multipotent progenitor cells (MPP).129 MPP differentiate either into common myeloid 

progenitor (CMP) or common lymphoid progenitor (CLP) cells, which then produce cells 

of the entire myeloid and lymphoid lineages, respectively.128,129 In this way, MPP serve 

as the divergence point for the two main branches of hematopoiesis.129 The CMP is also 

referred to as the colony forming unit (CFU)-granulocyte, erythrocyte, 

monocyte/macrophage, megakaryocyte (CFU-GEMM), as it gives rise to these myeloid 

cell populations.129 Red blood cells are formed following maturation of the CFU-GEMM 

into burst forming unit-erythroid (BFU-E) and then CFU-erythroid (CFU-E).129 

Differentiation of CFU-GEMM into CFU-granulocyte-macrophage (CFU-GM) results in 

the production of mature neutrophils and macrophages.129 The myeloid lineage also 
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includes megakaryocytes, which form platelets, mast cells, and the granulocytic 

basophil and eosinophil populations. Conversely, the CLP generates mature T and B 

lymphocytes, as well as natural killer (NK) cells.129 A basic representation of 

hematopoiesis is illustrated in Figure 4. In MDS, aberrant hematopoiesis typically results 

in peripheral blood cytopenias, or the loss of cells of a particular lineage from premature 

cell death. Although loss of mature red blood cells, or anemia, is the most frequently 

observed cytopenia in MDS, other forms include neutropenia, loss of neutrophils, 

thrombocytopenia, loss of platelets, and leukopenia, general loss of white blood cells.4 

Lymphoid Cell Lineage Involvement. Aberrant expression, activation and 

function of specific lymphocytic lineage cells is well documented in MDS, linking this 

branch of hematopoiesis to immune-mediated pathobiology. For one, natural killer (NK) 

cell cytolytic activity is globally impaired, with reduced expression of activating receptors 

resulting in impaired and deficient immunosurveillance.130 Importantly, reduced function 

significantly correlated with disease progression, as the greatest functional defects were 

observed in higher-risk patients, those with increased BM blast count and abnormal 

karyotype.130 These findings suggest that NK cells may function to eliminate aberrant 

hematopoietic cells in lower-risk disease, and that the progressive loss of cytotoxic 

ability results in expansion and escape of the leukemic clone.130 Alternatively, biological 

events associated with genetic evolution of the clone may further impair NK cell 

function. Moreover, genes associated with the B cell lineage are significantly reduced in 

MDS CD34+ BM-MNC compared to normal controls, potentially contributing to the 

apparent myeloid lineage bias in MDS.131 Accordingly, B cell precursors are markedly 

reduced in MDS compared to normal.131  
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Figure 4. Overview of hematopoiesis. Long-term (LT) hematopoietic stem cells (HSC) 
differentiate into short-term (ST)-HSC, which have reduced self-renewal capacity. ST-
HSC differentiate into multipotent progenitor cells (MPP), which can either differentiate 
into precursor cells of the myeloid or lymphoid lineages, namely common myeloid 
progenitors (CMP) or common lymphoid progenitors (CLP). The CMP will propagate all 
cells of the myeloid lineage, including red blood cells (RBC), megakaryocytes and 
platelets, monocytes and macrophages, and the granulocytes, including eosinophils, 
neutrophils and basophils. The CLP will generate B cells, T cells and natural killer (NK) 
cells through lymphopoiesis. 
 

Conversely, cytotoxic T lymphocytes are expanded in MDS, retain potent 

cytolytic activity and appear to be reduced upon response to treatment.132 Depletion of 

CD8+CD57+ effector T cells from long-term cultures of BM-MNC resulted in a marked 

increase in colony forming capacity, albeit to a lesser extent than that observed in 

normal controls.133 While MDS-derived CD8+ cell add-back had no effect on normal 

control colonies, no colonies formed in all 33 MDS samples where autologous CD8+ 
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cells were added back into culture, illustrating an antigen-specific autologous 

response.133 In support of this observation, in patients with an abnormal karyotype, 

depletion of this effector lymphocyte population increased the proportion of genetically 

abnormal cells by approximately 12.5%, indicating that the biological effects of the 

CD8+ cells is largely surveillant and involved in direct clonal suppression.133 

Accordingly, isolated CD8+ cells are typically oligoclonal, likely a result of selective 

expansion in response to self-recognition of an abnormal hematopoietic progenitor.134 

While CD4+ helper T cells are also aberrantly expanded in MDS, isolated 

populations are typically polyclonal.134 Expansion of regulatory T cells (Tregs), defined 

as CD4+CD25+FOXP3+, is evident in the PB and BM of MDS patients with higher-risk 

disease.135,136 In lower-risk patients, autoimmune reactions targeting dysplastic 

hematopoietic cells may be the result of diminished Treg function and localization to the 

BM in this subset of patients.135,136 On the contrary, in higher-risk patients, Treg 

expansion aids in immunologic escape of the MDS clone, permitting disease 

progression.135,136 Indeed, PB Treg expression is associated with reduced survival and 

poor prognosis.137 Lastly, IL-17 producing CD4+ T cells, or Th17 cells, have known 

pathobiological roles in autoimmune conditions and other inflammatory responses 

whereby they function as potent inducers of cytokine production.97 Th17 cells are 

markedly expanded in lower-risk MDS, which is likely indicative of an inflammatory 

reaction.97 Moreover, Th17 and Treg cells have an inverse relationship in lower- versus 

higher-risk MDS and this pattern reflects that observed in autoimmune conditions.97 

These findings may indicate why autoimmune diseases are significantly associated with 

MDS, particularly in lower-risk patients.   
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The Role of Myeloid-Derived Suppressor Cells (MDSC) and S100A9. Named 

appropriately, myeloid-derived suppressor cells (MDSC) represent a phenotypically 

distinct, immature myeloid cell population that remains in an activated and highly 

immunosuppressive state.138 A block in myeloid lineage differentiation results in the 

accumulation of MDSC, which are often expanded in pathological conditions, including 

cancer, autoimmunity, inflammation and infection, as well as in the normal process of 

aging.138 MDSC modulate both the innate and adaptive immune responses through two 

general modes of action, namely cell-to-cell, contact-based interactions and also the 

release of soluble mediators.138 MDSC produce a number of factors that contribute to 

immune suppression, including substantial amounts of reactive oxygen species (ROS), 

nitrous oxide (NO), arginase and inducible nitric oxide synthase (iNOS), as well as 

direct release of granzyme granules.138 These factors are highly suppressive of NK and 

T cell responses, which in conjunction with the known role of MDSC in promoting Treg 

expression, demonstrates clearly the role of MDSC in fostering immune tolerance.138,139 

To date, two populations of MDSC have been identified and differ in morphology, with 

one appearing more granulocytic and the other more monocytic.138 These subsets 

display inversed expression of ROS and NO, with low levels of ROS and high NO 

evident in the monocytic subset and high ROS and low NO in the granulocytic.138 

Understanding of the distinct functions of these subsets is presently under investigation.  

While MDSC regulation is complex, a number of mediators have key roles in 

MDSC activation and expansion, including pro-inflammatory cytokines like IFN-γ and 

TGF-β, and signaling through TLRs.138 Recently, the danger-associated molecular 

pattern (DAMP) proteins S100A8 and S100A9, or migration inhibitory factor-related 
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protein 8 (MRP8) and MRP14, respectively, have been implicated in MDSC activation 

and expansion.140,141 S100A8 and S100A9 are just two of the twenty-five members of 

the S100 calcium-binding protein family with known roles in tumorigenesis, infection and 

inflammation.142 These proteins are highly expressed by neutrophils and monocytes, 

and secretion of S100A8/A9 into the extracellular milieu represents a pro-inflammatory 

signal of cell damage.143 Generally, S100A8 and S100A9 function as a heterodimer that 

is also known as calprotectin, expression of which is significantly increased in a number 

of cancer types, including breast, prostate, lung and stomach cancers.142 Both 

intracellular and extracellular roles have been described for S100 family members. 

Extracellular S100A8/A9 functions akin to cytokine signaling, whereby engagement of 

specific cell surface receptors results in signal transduction and an inflammatory 

response.142 To date, S100A8/A9 has been shown to serve as a ligand for TLR4, RAGE 

and surface receptors with carboxylated N-glycan moieties.144-146 S100A9-induced 

activation of TLR4 results in a similar signaling cascade as is observed with 

lipopolysaccharide (LPS) stimulation, namely through IκBa- and MAPK-mediated 

pathways resulting in robust activation of NF-κB and generation of inflammatory 

cytokines.147 In a murine model of human breast cancer, ligation of S100A8/A9 with 

surface receptors on MDSC was shown to induce NF-κB-dependent peripheral blood 

MDSC expansion.141 S100A8/A9 is actively produced by MDSC, which upon secretion, 

functions in an autocrine circuit to further sustain MDSC expansion.141 In an alternative 

murine model, the constitutive secretion of IL-1β by fibrosarcoma cells results in highly 

metastatic and aggressive tumors through IL-1β-directed immune suppression.148 

Interestingly, the IL-1β receptor, a member of the IL-1/TLR family, directs the 
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accumulation of murine MDSC, defined as CD11b+/Gr-1+ cells, resulting not only in T 

cell inactivity but also hematopoietic abnormalities, such as anemia.148 

Importantly, we reported that MDSC are significantly expanded in the BM of 

lower-risk, but not higher-risk MDS patients compared with normal, age-matched 

controls as well as patients with solid tumors.140 Subsequent fluorescence in situ 

hybridization (FISH) analyses and targeted quantitative PCR (qPCR) for commonly 

observed MDS somatic gene mutations confirmed that the expanded MDSC population 

was distinct from the MDS clone.140 MDSC depletion from BM-MNC cultures resulted in 

increased T cell proliferation and improved progenitor colony forming capacity, 

illustrating the pathobiological role of MDSC in the aberrant hematopoiesis of MDS. 

Furthermore, MDSC highly express the surface receptor glycoprotein CD33, which 

belongs to the sialic acid-binding immunoglobulin-type lectin (Siglec) family of receptors 

with known roles in inflammation.149 Surface receptor density of CD33 is significantly 

greater in MDSC from MDS compared to those from normal donors, suggesting an 

aberrant role of CD33-driven signaling in MDS.140 We found that the primary MDS-

specific ligand for CD33 is the DAMP protein S100A9, which is actively produced and 

secreted by MDSC.140 Engagement of S100A9 with CD33 results in CD33-dependent 

signaling, culminating in MDSC activation and expansion.140 Notably, S100A9 

transgenic (S100A9Tg) mice phenocopy human MDS, evidenced by progressive 

multilineage cytopenias and cytological dysplasia, hypercellular marrows and age-

dependent expansion and accumulation of MDSC.140 Treatment of the transgenic mice 

with all-trans retinoic acid (ATRA) resulted in the forced differentiation of MDSC to 

mature myeloid cells with corresponding improvement in blood counts and 
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hematopoiesis.140 Together, these data illustrate that aberrant inflammation driven by 

S100A9 and the expansion of MDSC together create a suppressive and inflammatory 

microenvironment that is sufficient to direct the development of MDS. A summary of 

general MDSC immunosuppressive mechanisms and our findings related to MDSC and 

S100A9 in MDS can be found in Figure 5. 

 

The 5q- Syndrome.  

 

Overview. Though the 5q- syndrome was initially described in 1974 in the 

seminal publication by Van den Berghe et al., it was not acknowledged as a distinct 

subset of Myelodysplastic Syndromes until 2001 with the release of the first WHO 

classification system.34,35 To date, it represents the sole MDS subtype characterized by 

the presence of a cytogenetic abnormality, namely the isolated, interstitial deletion of 

the long arm of chromosome 5 (del(5q) MDS).37 With respect to the clinical phenotype, 

patients with del(5q) MDS present with a progressive, macrocytic, hypoplastic anemia 

despite the presence of a normo- or hypercellular bone marrow (BM).150 Conversely, 

platelet and megakaryocyte counts are generally normal or increased, illustrating that 

only the erythroid compartment suffers from worsening blood counts.150 Both BM and 

peripheral blood (PB) blast percentages are below 5%.37 Of interest, the 5q- syndrome 

is more common in females, with a 7:3 prevalence versus males.151 Overall, patients 

with del(5q) MDS have a favorable prognosis, with a median survival of 63 months and 

a lower chance for leukemic transformation.151  
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Figure 5. General mechanisms of hematopoietic inhibition by MDSC and the role 
of the MDSC/S100A9 axis in MDS. (A) MDSC mediate the suppression of a number of 
immune cells, including NK and T cells, and also promote the expansion of regulatory T 
cells (Treg). (B) Through the release of soluble factors, MDSC are highly suppressive 
and have a number of mechanisms of inhibition. These include release of reactive 
oxygen species (ROS) and nitrous oxide (NO), arginase and inducible nitric oxide 
synthase (iNOS), and inflammatory cytokines, like TGF-β, IFN-α, IL-10 and others. (C) 
MDSC robustly express the surface receptor glycoprotein CD33. (D) The DAMP protein 
S100A9 is a native ligand for CD33 and is actively produced by MDSC. Upon secretion, 
S100A9 functions (E) in a paracrine manner to mediate progenitor cell death. 
Additionally, S100A9 (F) reinforces MDSC activation and expansion through autocrine 
signaling and binding to CD33. 
 

Moreover, this particular clonal abnormality is restricted to the myeloid lineage, 

as both myeloid and erythroid progenitors harbor the chromosomal deletion but 

generally not cells of the lymphoid compartment.152 Both proximal (5q12-14) and distal 

(5q31-33) deletions are typically reported, with breakpoints having been recognized at 
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each band between 5q11 and 5q35.153 Unmistakably, this particular genetic loss is large 

and substantial. The majority of the long arm of chromosome 5 is lost, and with it a 

gene-rich area.153 In the early 2000s, considerable efforts in molecular mapping 

identified the del(5q) commonly deleted region (CDR), or the smallest region lost in 

patients with the 5q- syndrome.154 Specifically, the CDR spans a genomic region of 1.5-

megabases and 40 genes, bordered by marker D5S413 and the gene GLRA1.154 

Comprehensive array-based transcriptome analyses of CD34+ HSPC illustrated that 

536 genes are differentially expressed in del(5q) patients compared to normal 

donors.155 Of interest, mutations in the CDR genes are rare, implicating gene dosage 

effects in the pathobiology of the 5q deletion.155 Accordingly, expression levels of the 

CDR genes are approximately 60-80% of normal.155 This range is not characteristic of a 

two-hit model of gene loss, and is reminiscent instead of haploinsufficiency stemming 

from loss of a single allele.155 Indeed, Boultwood et al. suggested that casein kinase 1 

alpha 1 (CSNK1A1) or ribosomal protein S14 (RPS14) may be candidate 

haploinsufficient genes implicated in del(5q) MDS pathobiology.155 

Treatment of Del(5q) MDS. Anemia is the major therapeutic challenge for 

patients with del(5q) MDS. Approximately 80% of patients are transfusion-dependent 

proximate to the time of diagnosis, and 93% of patients will be at some point during their 

disease.151 Historically, patients with del(5q) MDS received supportive therapy, as other 

treatment approaches were largely disappointing. While lenalidomide, a second-

generation immunomodulatory drug (IMiD), is currently FDA approved for the treatment 

of del(5q) MDS, the path to this designation is rather unique. Thalidomide, the parent 

compound of lenalidomide, is a known teratogenic agent responsible for widespread 
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birth defects or phycomelia in the 1950s.156 Despite this, thalidomide has unique 

biological effects including the enhancement of antigen-induced T cell proliferation and 

activity and inhibition of angiogenesis, illustrating the ability of this agent to modulate the 

immune response.156,157 In a study performed in lower- and higher-risk MDS, 

approximately 19% of patients responded to thalidomide.158 Though no cytogenetic or 

complete responses were observed, the drug did improve blood counts and reduce 

cytopenias in a subset of lower-risk patients.158 The negative connotation of the IMiDs 

was lessened with the identification of lenalidomide, a 4-amino-glutarimide analogue of 

thalidomide.156 Lenalidomide has greater potency than its parent compound with less 

toxic effects.156 Seminal work by List et al. demonstrated the therapeutic efficacy of 

lenalidomide in del(5q) MDS.45 Approximately 83% of del(5q) patients had a fast 

hematologic response associated with transfusion-independence.45,159 Additionally, 

lenalidomide was cytotoxic to the del(5q) clone as evidenced by frequent cytogenetic 

responses.159 Lenalidomide received FDA approval in 2005 and still remains the 

standard of care in patients with deletion of chromosome 5q MDS. 

Pathobiology of the 5q- Syndrome.  

Ribosomal protein S14 (RPS14). Major advances in the understanding of 5q- 

syndrome biology were made by Ebert and colleges in 2008, with the identification of 

ribosomal protein S14 (RPS14) haploinsufficiency in the pathobiology of del(5q) MDS 

anemia.160 In an elaborate set of knockdown experiments, normal CD34+ HSPC were 

lentivirally transduced with shRNAs targeting each of the 40 genes in the CDR.161 

Knockdown of one gene, namely RPS14, to haploinsufficient levels (~60% expression) 

recapitulated the 5q- phenotype, namely erythroid-specific proliferative arrest and cell 
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death.160 The group additionally demonstrated that no mutations were detectable in the 

remaining RPS14 allele in del(5q) patients, confirming the pathological effects of RPS14 

loss in MDS were attributable to a RPS14 gene dosage effect.160 Moreover, a murine 

model of the 5q- syndrome was generated by the syntenic deletion of the del(5q) CDR, 

which translates to the Cd74-Nid67 interval in mice.162 Mice harboring the deletion 

phenocopy human del(5q) MDS, with severe anemia, erythroid dysplasia and reduced 

red blood cell counts.162 Notably, Cd74-Nid67 BM erythroid cells demonstrated 

significantly increased expression of p53.162 Crossing of the Cd74-Nid67 mice with p53 

deficient mice rescued the hematologic phenotype and improved erythropoiesis, 

illustrating that the molecular pathobiology of the 5q- syndrome is p53-dependent.162 

In support of these findings, RPS14 gene haploinsufficiency in del(5q) MDS was 

shown to result in the erythroid lineage-specific activation and accumulation of p53.163 

RPS14, a central component of the 40S ribosome, has essential roles in RNA 

processing and maturation.160 Mechanistically, decreased RPS14 expression disrupts 

ribosome assembly, triggering the degradation of MDM2, an E3 ubiquitin ligase and the 

central negative regulator of p53 activation.160,163 Indeed, BM biopsies from del(5q) 

patients confirm increased nuclear expression of p53 and reduced expression of MDM2 

in erythroid progenitors.164 Stabilized and activated p53 triggers p21-dependent cell 

cycle arrest, erythroid progenitor-specific cell death and anemia.163 Abnormal activation 

of the p53 pathway in MDS can additionally be attributed to the role of p53 in monitoring 

ribosome function, as ribosomal stress can directly activate p53.165 Interestingly, in a 

recent investigation, reduced expression of RPS14 was identified in 83 of 156 non-
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del(5q) MDS patient specimens, and was associated with increased apoptosis of 

erythroid precursors.166  

Perhaps the findings demonstrating a key role for the RPS14/MDM2/p53 

pathway in driving ineffective erythropoiesis in del(5q) MDS are best corroborated by 

studies performed in the Rps14 haploinsufficient mouse model.167 Inactivation of Rps14 

results in p53-dependent defects in erythropoiesis, age-dependent, progressive anemia 

and other defining features of human disease.167 Using a quantitative proteomics-based 

approach, 26 proteins were identified as differentially expressed in the Rps14 

haploinsufficient versus wild-type littermates.167 As expected, many of these were 

ribosomal-related proteins, which functioned as a positive control for the experiment. 

Most important, though, S100A8 and S100A9 were the highest differentially expressed 

proteins in the context of Rps14 haploinsufficiency.167 Wild-type HSPC, defined as LSK 

(Lin-Sca-1+c-Kit+) positive, treated with recombinant murine S100A8 failed to 

differentiate properly along the erythroid lineage, which was rescued by CRISPR-Cas9-

mediated knockdown of S100a8.167 Furthermore, S100A8 and S100A9 can signal to 

increase p53 activation, and multiple p53 binding sites have been identified within the 

S100A9 gene promoter, linking these proteins in a positive feedback loop.167,168 Indeed, 

p53 activation was increased in the context of Rps14 haploinsufficiency, impairing 

differentiation and increasing erythroid progenitor cell death.167 These data link innate 

immune mediators in the pathobiology of del(5q) MDS though an 

S100A8/A9/Rps14/p53 pathway.  

Casein kinase 1A1 (CSNK1A1). In addition to RPS14, Boultwood et al. hinted at 

a potential pathobiologic role for haploinsufficiency of casein kinase 1A1 (CSNK1A1) in 
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del(5q) MDS, as expression levels of CSNK1A1 were reduced to approximately 50% in 

this cohort of patients.155 Indeed, this hypothesis was recently confirmed using a murine 

model of CSNK1A1 haploinsufficiency.169 CK1α, which is encoded by CSNK1A1, is a 

key regulator of β-catenin given its membership in the β-catenin destruction complex. 

Haploinsufficiency of CSNK1A1 increased β-catenin activation in HSPC, resulting in 

enhanced survival and proliferation of the stem cell population.169 These data suggest 

that loss of CSNK1A1 expression provides a proliferative advantage to the del(5q) 

clone, and highlight an additional mechanism of pathobiology conferred by the 

chromosome 5q deletion. 

TLR4/TRAF6/NF-κB-dependent signaling axis. Intriguing work by 

Starczynowski and colleagues implicated, for the first time, microRNAs in the 

pathobiology of the 5q- syndrome.117 MicroRNAs (miRNAs), highly conserved, ~22-

nucleotide-long, small non-coding RNAs, mediate post-transcriptional gene regulation to 

exert widespread repressive changes in gene expression.170 Following parallel 

sequencing and qPCR validation, miR-145 and miR-146a were shown to be significantly 

reduced in del(5q) patients compared to normal controls.117 miR-145 lies within the CDR 

whereas miR-146a is just outside this region.117 In lethal irradiation and transplantation 

experiments, overexpression of miR-145 and miR-146a recapitulated the del(5q) 

phenotype, confirming a role for the miRNA in disease biology.117 Moreover, toll-

interleukin 1 receptor (TIR) domain containing adaptor protein (TIRAP) and TNF 

receptor-associated factor 6 (TRAF6) were identified as the targets of miR-145 and 

miR-146a, respectively.117 Loss of miR-145 and miR-146a derepressed expression of 

these downstream targets which aberrantly drives innate immune activation, as both 



www.manaraa.com

 
 

42 

TIRAP and TRAF6 have central roles in TLR4 and NF-κB signaling.117 As proof of 

concept, forced expression of TRAF6 significantly reduced blood cell counts, impaired 

myeloid lineage differentiation and induced bone marrow failure and risk of AML 

progression.117  

Notably, these data are strongly supported  by recent findings related to TRAF-

interacting protein with forkhead-associated domain B (TIFAB), a gene located at 

5q31.1 that is also haploinsufficient in del(5q) MDS.171 Transplantation experiments of 

germline Tifab knockout BM cells into wild-type recipients showed that loss of Tifab 

confers hematopoietic defects.171 Recipient mice developed bone marrow failure and 

cytopenias with impaired myeloid differentiation.171 Mechanistically, TIFAB complexes 

with TRAF6 to promote its degradation, which in turn inhibits NF-κB.171 Therefore, 

haploinsufficient loss of TIFAB in del(5q) MDS increases TRAF6 activity, enhancing 

TLR4-mediated signaling and activation of NF-κB.117,171 

Finally, the aberrant TLR4/TRAF6/NF-κB pathway in del(5q) MDS is additionally 

dysregulated by p62, also known as sequestosome 1 (SQSTM1), a mitochondrial 

adapter indispensable for autophagy.172 Paradoxically, despite the presence of p62 

within the 5q chromosome deletion in MDS, expression levels of p62 are often normal 

or even increased.172 Normally, p62 helps activate NF-κB by recruitment and activation 

of TRAF6. This allows for TRAF6-mediated signaling and activation of NF-κB.172 In 

del(5q), where expression of miR-145 and miR-146a are reduced, overexpression of 

p62 exacerbates signaling along this pathway.172 Additionally, p62 is a transcriptional 

target of NF-κB, illustrating a feedforward mechanism of expression. 
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Diaphanous related formin 1 (DIAPH1). Located at 5q31.3, DIAPH1 flanks the 

CDR of chromosome 5 in del(5q) MDS.173 DIAPH1 encodes the mDia1 protein with 

known roles in actin polymerization and Rho GTPase signaling.173 Importantly, mDia1 

has been shown to facilitate activation of a number of innate immune cells, including T 

cells, macrophages and neutrophils, linking mDia directly to innate immunity.174-176 

Gene expression of mDia1 was reduced approximately 50% in del(5q) MDS patients 

compared to normal controls, which is consistent with the degree of knockdown of other 

CDR genes.173 In mice, the Drf1 gene encodes for mDia1, and mice heterozygous and 

homozygous for Drf1 loss evidence dramatic hematologic defects.173,174 Specifically, the 

mice phenocopy human MDS and share features of murine models from other CDR 

genes, including Rps14.173,174 In mechanistic murine model studies, loss of mDia 

correlated with a significant increase in expression of the TLR4 co-receptor CD14 on 

granulocytes.174 These findings were corroborated by flow-based measurements of 

CD14 expression, whereby expression was significantly increased in del(5q) patients 

compared to both normal donors and patients with non-del(5q) MDS.174 

Understandably, overexpression of CD14 results in hypersensitive activation of TLR4 to 

agonists, driving aberrant innate immune activation. 

 

Programmed Cell Death 

 

Caspases. Programmed cell death (PCD) describes tightly-regulated, intrinsic 

suicide mechanisms utilized by cells during processes related to normal development, 

tissue maintenance and even aberrantly in the context of disease, including cancer and 
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autoimmune disorders. Apoptosis, described in a later section of this manuscript, is the 

best-characterized mechanism of PCD, mainly because it was among the first forms of 

PCD identified. As a consequence, substantial work performed in model organisms as 

well as in mammalian cells has elegantly deconvoluted the pathway culminating in 

apoptotic cell death.177 Nonetheless, other distinct forms of PCD are now recognized, 

including autophagy, necroptosis and pyroptosis. Each mechanism has unique 

morphological and biological hallmarks, as well as general attributes common to many 

PCD pathways. Mechanisms of PCD, as well as a number of inflammatory processes, 

are largely mediated by cysteine proteases, called caspases.178  

Expansion of the caspase (cysteine-dependent aspartate-specific protease) 

family name highlights two key catalytic functions that each member of this enzymatic 

family possesses: first, a cysteine-histidine catalytic mechanism and second, specificity 

for substrate cleavage after an aspartic acid residue.179,180 Caspases vary in the four 

amino acid sequence that dictates substrate recognition, and synthetic peptide inhibitors 

to particular caspases are typically created with activity against the respective 

recognition motif.181 To date, twelve human caspases have been identified.182,183 The 

human genome contains eleven or twelve caspases, the variability a consequence of a 

single nucleotide polymorphism in caspase-12, resulting either in a truncated protein or 

full-length enzyme. Full-length caspase-12, however, appears confined to populations of 

African descent.182  

Generally, pro-caspases share a similar structure, each composed of an N-

terminal prodomain of variable length and a C-terminal protease domain. Within the 

protease domain, a large, p20 subunit is joined to a smaller, p10 subunit by means of a 
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short linker region. The p20 subunit has been implicated in catalytic activity, while the 

p10 confers substrate specificity.181 Despite this basic organization, caspases can be 

categorized into distinct subsets, and historically a number of criteria have been applied 

to do so. Notably, and overlooking a few exceptions, caspases segregate into the same 

subfamilies, regardless of what factor is used in categorization (Figure 6). 

By simpler means, caspases can be classified according to the length of their 

prodomains. Contrary to shorter domains, longer prodomains house homotypic protein-

protein interaction motifs of the death domain (DD) superfamily, with caspase activation 

and recruitment domain (CARD), death effector domain (DED), and pyrin domain (PYD) 

subfamilies.184 These interaction motifs aid in caspase activation by allowing for the 

recruitment of pro-caspases to signaling platforms where they undergo proximity-

induced auto-activation.181,184 Furthermore, phylogenetic analysis of the complete 

mRNA sequence of each caspase establishes three main clusters, which perhaps not 

surprisingly, coincide with the general function that each performs. Cluster I contains 

caspases with known roles in inflammation, whereas clusters II and III relate to 

apoptosis, with the initiator caspases comprising the former group, and the effectors the 

latter. 

Apoptosis. Apoptotic cell death can be triggered by two distinct pathways, the 

intrinsic and extrinsic, both of which converge on a similar signaling event, namely 

activation of caspase-3 (Figure 7).105,185 The intrinsic pathway is predominantly 

governed by mitochondrial integrity and specifically, the balance between pro- and anti-

apoptotic Bcl-2 family members. Beyond a particular threshold, cytochrome c is 

released from the mitochondria, triggering activation of the initiator caspase-9 which 
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Figure 6. Classification of human caspases. A number of classification approaches 
exist for classifying the twelve human caspases that have been identified. Generally, the 
caspases group into the same sub-families irrespective of the classification approach 
employed. The main approaches used to date include general function (inflammation, 
initiator, effector), phylogenetic (cluster I, II or III), death domain (DD) interaction motif 
(no motif, DED, CARD) and prodomain length (short, long). 
 

subsequently cleaves and activates caspase-3, culminating in apoptosis.186 Conversely, 

the extrinsic pathway is dependent on cell extrinsic ligand interaction with plasma 

membrane-bound death receptors of the tumor necrosis factor (TNF) superfamily.105,185  

Ligation of TNF to TNF receptor (TNFR), TNF-related apoptosis-inducing ligand 

(TRAIL) to TRAIL receptor (TRAIL-R) and Fas to Fas receptor (FasR) results in 

activation of the initiator caspase-8 and activation of caspase-3.187 Ultimately, apoptosis 

is a non-immunogenic mechanism of cell death. Following nuclear condensation and 
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Figure 7. Simplistic overview of the intrinsic and extrinsic apoptotic pathways. 
The intrinsic apoptotic pathway is largely governed by mitochondrial integrity. (A) 
Cellular stresses alter the balance between pro- and anti-apoptotic Bcl-2 family 
members, resulting in (B) the release of cytochrome c from the mitochondria. This in 
turn triggers activation of caspase-9, an initiator caspase. Caspase-9 will activate 
caspase-3, and subsequent signaling events will result in apoptotic death. (C) The 
extrinsic apoptotic pathway initiates with external ligation of TNF superfamily surface 
receptors, specifically TNFR, TRAIL-R and FasR. (D) Caspase-8 will be cleaved and 
activated, resulting in downstream activation of caspase-3 and apoptosis.  
 

DNA fragmentation, cellular contents are packaged into apoptotic bodies which result 

from blebbing of the plasma membrane. During this process, cytosolic phosphatidyl 

serine is exposed extracellularly, marking the apoptotic bodies for phagocytosis by 
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neighboring cells.185 The cell shrinks and is removed without generation of inflammatory 

signals. 

Autophagy. As an evolutionarily conserved and tightly-regulated process, 

autophagy represents a cytoprotective mechanism to maintain cellular energy 

homeostasis through the catabolism of long-lived, damaged or excessive proteins or 

organelles.188 A conserved set of thirty or more core proteins, the autophagy-related 

proteins (Atg), mediate the formation of a double-membrane vacuole, called the 

autophagosome, which sequesters cytosolic material to provide energy and recycle 

nutrients.188,189 The autophagosome fuses with the lysosome, whereby its contents are 

degraded by lysosomal hydrolases, or cathepsins (Figure 8). Autophagy can occur non-

selectively as a stress-adaptation mechanism so that the cell can avoid death. 

Alternatively, selective or cargo-specific autophagy results in the removal of select 

proteins or organelles to control number and ensure quality.189 Mitophagy, for instance, 

the autophagic removal of mitochondria, occurs normally during red blood cell 

maturation but also occurs upon detection of damaged or noxious mitochondria (Figure 

8).189 While autophagy is driven in response to stress, over stimulation can trigger 

autophagic, or type II cell death.188   

Moreover, interplay exists between autophagy and apoptosis as a means of 

regulating cell death. In some contexts, autophagy suppresses apoptotic cell death 

providing the cell an opportunity to survive. Conversely, autophagy can also promote 

apoptosis. For instance, caspase-mediated cleavage of beclin 1, an essential 

autophagic protein, results in its mitochondrial accumulation and accelerated cell 

death.190,191 Additionally, the autophagosomal membrane can act as a platform for the 
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Figure 8. Autophagy and mitophagy maintain cellular homeostasis through 
catabolism. (A) Long-lived, damaged or unnecessary proteins or organelles will be 
degraded and recycled through the process of autophagy. (B) Mitophagy, or the 
recycling of damaged mitochondria, is a specialized form of autophagy. Both autophagy 
and mitophagy initiate with the formation of the (C) autophagosome, a double 
membrane vacuole. The autophagosome sequesters the unwanted cellular material, 
allowing for (D) lysosomal hydrolases to fuse with the autophagosome and (E) degrade 
the contents.  
 

formation of an intracellular death-inducing signaling complex (iDISC), resulting in the 

recruitment and activation of caspase-8 to initiate apoptosis.192 Similar to apoptosis, a 

complex interaction exists between autophagy and pyroptosis, discussed in a later 

section of this manuscript. Under basal conditions, autophagy and pyroptosis are 

antagonistic. Reduced autophagic activity and the accumulation of damaged 

mitochondria result in release of mitochondrial DNA (mtDNA), thereby activating the 

NLRP3 inflammasome to mature caspase-1 and interleukin (IL)-1β.193 In contrast, 

formation of NLRP3 inflammasome complexes triggers formation of 

autophagosomes.194 In this context, both pro-IL-1β and active NLRP3 inflammasome 
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complexes can undergo degradation, illustrating autophagy-mediated dampening of the 

inflammatory response.194,195   

Historic View of Cell Death in MDS. For over two decades, apoptotic cell death 

potentiated by inflammatory cytokines has long been considered a fundamental feature 

of MDS. Despite the presence of normo- or hypercellular marrows, MDS patients 

typically present with peripheral blood cytopenias involving one or more lineages, an 

apparent paradox that in retrospect was reconciled incorrectly by apoptosis. In lower-

risk disease, BM-MNC and CD34+ stem and progenitor cells were shown to exhibit a 

heighted rate of proliferation, which occurred concurrently with apoptosis.196,197 

Apoptosis was demonstrable in the erythroid, myeloid and megakaryocytic lineages, as 

well as in cells of the surrounding stroma by a number of methodologies, including in 

situ end labeling of fragmented DNA and annexin-V and PI staining.196-198 Even though 

the marrow is highly engaged in DNA synthesis, the rapid turnover of precursor cells 

prohibits their maturation and differentiation, thereby accounting for the presence of 

cytopenias and the hematopoietic deficiency observed in MDS. Though unknown at the 

time, these markers are not faithful and specific indicators of apoptotic cell death and as 

a consequence, the principal mechanism of cell death in MDS has been incorrectly 

labeled. This was demonstrated by our group in 2016, over twenty years later, 

effectively changing the paradigm for these disorders.199 These data are described in 

detail in Chapter 2.  

Though it is not the predominant programmed cell death pathway, apoptosis 

does play a role in MDS, as dysregulation of both the intrinsic and extrinsic pathways 

have been reported.105 In early-stage disease, pathobiology favors a pro-apoptotic 
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phenotype. Death-inducing ligands TNF-α and Fas are up-regulated, as well as death 

receptors and the signaling adaptor Fas-associated death domain (FADD), required for 

caspase-8 activation.98,200-202 Additionally, spontaneous mitochondrial release of 

cytochrome c into the cytosol is observed in MDS, which is hypothesized to not only 

drive activation of caspase-9 and caspase-3 but also to sensitize cells to extrinsically-

induced apoptosis.203 In late-stage disease, a shift to an anti-apoptotic phenotype is 

observed with reduced cell death and increased survival signals. Whereas pro-apoptotic 

Bcl-2 family members, like Bad and Bax, are over-expressed in lower-risk patients, 

higher-risk patients over-express anti-apoptotic members, including Bcl-2 and Bcl-

xL.197,204 NF-κB-dependent up-regulation of FLICE-inhibitory protein (FLIP), a negative 

regulator of death receptor signaling, also occurs with disease progression.200,205  

Anemia, a consequence of ineffective erythropoiesis, is evident in approximately 

90% of MDS patients at some point in the course of their disease.206 Given the role of 

mitophagy in normal erythroid maturation and the aberrances observed in the erythroid 

compartment in MDS, dysregulated mitophagy has been implicated in MDS 

pathobiology.105 Though loss of autophagic pathway genes has not been reported in 

MDS to date, a number of genes are lost in AML, suggesting a possible role in disease 

progression.207 Cytochrome c oxidase, encoded by mtDNA, is enzymatically involved in 

the electron transport chain and iron metabolism in the mitochondria.208 Approximately 

75% of MDS patients harbor mutations in cytochrome c oxidase, resulting in the 

accumulation of iron in the mitochondrial matrix.208 Accordingly, MDS mitochondria are 

characteristically enlarged and iron-laden, and the presence of abnormalities increases 

with prognostic risk.209 Pathologic iron accumulation not only increases oxidative stress, 
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leading to increased mutations of both mtDNA and nuclear DNA, but exacerbates 

impaired mitochondrial integrity and homeostasis.209 Indeed, enhanced mitophagy is 

manifest in early-stage disease.210 MDS-derived erythroblasts undergo mitophagy 

earlier than normal erythroid progenitors, evidenced by five-time greater formation of 

iron-positive autophagosomes.210 Though mitophagy may be a protective mechanism in 

lower-risk disease to clear iron-laden mitochondria and safeguard against further 

genetic damage, activation of this mechanism occurs at the expense of the normal 

erythroid program.  

 

Pyroptotic Cell Death 

 

History and Hallmarks of Pyroptosis. First identified nearly two decades ago, 

pyroptosis was described as a caspase-1-dependent necrosis.211 At the time, Brennan 

and Cookson had classified the death of macrophages post Salmonella typhimurium 

infection as a more specialized, albeit unusual, form of necrosis.211 However, the 

inherent dependence upon caspase-1 warranted a distinct cell death designation, one 

that encompassed the inflammatory, but more importantly, the programmed nature of 

this pathway. Just a year after their initial discovery, the pair amended their conclusion 

and coined the term pyroptosis, whose roots stem from the Greek word ‘pyro,’ meaning 

fire, and ‘ptosis,’ a falling.212 Today, pyroptosis is regarded as a pro-inflammatory 

programmed cell death mechanism mediated by the formation of cytosolic 

inflammasome complexes which function to catalyze maturation of caspase-1, resulting 

in caspase-1-dependent signaling events that culminate in cytolysis (Figure 9). 
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Figure 9. The hallmarks of pyroptosis. While some hallmarks of pyroptosis are 
shared with apoptotic cell death, most are uniquely specific, including activation of 
NLRP3 inflammasome complexes, caspase-1-dependency and cell lysis. 
 

Of note, pyroptosis does share features characteristic of apoptosis, which may 

be attributable to the fact that in additional to cleavage of other pro-caspases, including 

caspase-4, -5 and -7, caspase-1 can activate caspase-3, the canonical apoptotic 

caspase.213 While also common to apoptosis, nuclear condensation and DNA 

fragmentation occur but through a distinct mechanism, namely by means of a caspase-

1-activated nuclease.214 Furthermore, poly(ADP-ribose) polymerase 1 (PARP1) 

cleavage is similarly observed in both cell death mechanisms. During pyroptosis, 
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caspase-1 cleaves caspase-7, which translocates into the nucleus to cleave PARP1.215 

PARP1, which serves to negatively regulate certain NF-κB-specific gene targets, is 

subsequently released, leading to transcription induction.215  

Generally, spillage of intracellular content into the extracellular environment, 

membrane pore formation, release of activated pro-inflammatory cytokines and cell lysis 

speak to the many distinct facets of pyroptosis that contribute to its inflammatory 

nature.213,214 At earlier time points, caspase-1 mediates formation of plasma membrane 

pores, which measure approximately 15-20 nanometers in diameter.214 These pores 

compromise membrane integrity, resulting in the dissipation of cellular ionic gradients, a 

net increase in osmotic pressure, intake of water and cell swelling.214,216 Additionally, 

activation of the cell surface cation channel transient receptor potential melastatin 2 

(TRPM2) may contribute to cell swelling during pyroptosis. TRPM2 is a calcium 

permeable channel expressed by a number of cell types, but most importantly, 

hematopoietic cells including CD34+ HSPC and immature erythroid and myeloid 

cells.217 Activation of TRPM2 by TNF-α or oxidative stress results in a significant 

increase in the intracellular concentration of Ca2+, leading to cell volume expansion and 

increased cell death.218 Reduced viability was attributed to cleavage of both extrinsic 

and intrinsic apoptotic caspases, like caspase-7 and caspase-3, both of which are 

known to be cleaved and activated by caspase-1.213,218 These findings suggest that in 

the context of oxidative stress or excess inflammatory cytokines, cell death of 

hematopoietic cells may be regulated in part by activation of TRPM2.218 Accordingly, 

mice deficient in both alleles of Trpm2 demonstrate not only reduced calcium influx and 
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signaling, but significant reductions in caspase-1 activation and IL-1β production.217 

TRPM2 activation and subsequent calcium mobilization may contribute to 

inflammasome activation, leading to maturation of caspase-1. Irrespective of the 

mechanism resulting in cell swelling, both apoptosis and pyroptosis are marked by 

compromised membrane integrity. Historically, annexin-V and 7-AAD positivity have 

labeled cells as apoptotic. However, cells undergoing pyroptosis additionally stain 

positive for these same markers,211 illustrating that caution should be exercised when 

identifying and characterizing a particular cell death mechanism. 

In accordance with one of its central roles in pyroptosis, specifically the 

maturation of pro-inflammatory cytokines, caspase-1 was initially identified for its ability 

to convert pro-interleukin-1β (pro-IL-1β) to its mature, active form.219,220 Actually, until a 

system of caspase nomenclature was implemented, caspase-1 was known as ICE, or 

interleukin-1β-converting enzyme, highlighting the importance of this particular role. 

Furthermore, caspase-1 catalyzes maturation of pro-IL-18, and together IL-1β and IL-18 

represent the prototypical cytokines that are activated during pyroptosis.221 These pro-

inflammatory cytokines are released following cell lysis, or execution of the pyroptotic 

program. However, secretion also occurs prior to cell lysis, specifically through non-

conventional secretory mechanisms.214 As both IL-1β and IL-18 are leaderless 

cytokines, their release does not follow the conventional endoplasmic reticulum (ER)-

Golgi apparatus pathway.222 Though the mechanism is not entirely understood, these 

pro-inflammatory targets, in addition to seventy-five other proteins, are targeted for non-

conventional secretion by active caspase-1.214,223 As potent inflammatory mediators, 

expression of IL-1β and IL-18 is tightly regulated to prevent unwarranted and damaging 



www.manaraa.com

 
 

56 

inflammation. Foremost, expression of pro-IL-1β and pro-IL-18 is dependent on NF-κB 

activation for transcriptional priming.213 Next, maturation occurs only following cleavage 

of the cytokine prodomain by active caspase-1.213  

Indeed, many of the hallmarks of pyroptosis can be attributed to processes that 

occur as a result of caspase-1 activation (Figure 9). Inasmuch as pyroptosis is 

dependent on caspase-1, it remains as dependent on inflammasome complexes, the 

functional complex that matures pro-caspase-1 to drive cell demise.   

NLR Proteins. The nomenclature of the nucleotide-binding oligomerization 

domain (NOD)-like receptors (NLRs) has since been reformed for unity and clarity.224 

Named for the presence of two receptor family-defining domains, the NLRs are now 

more accurately known as the nucleotide-binding domain and leucine-rich repeat 

containing receptors (NLRs).224 These germline-encoded receptors belong to the 

pattern recognition receptor family (PRR) with central roles in innate immunity. 

Specifically the NLRs function to recognition both microorganism and host-derived 

danger signals, or pathogen-associated molecular patterns (PAMPs) and danger-

associated molecular patterns (DAMPs), respectively.225 Subsequent signaling results in 

activation of both the innate and adaptive immune responses. The twenty-two known 

members of the NLR family share structural similarities and can generally be divided 

into three main parts.226 First, the N-terminal domain is variable and mediates protein-

protein interactions.226 In total, four different domains exist, namely the acidic 

transactivating domain, the Baculovirus inhibitor of apoptosis repeat (BIR) domain, the 

caspase activation and recruitment domain (CARD) and the pyrin domain (PYD).226 
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Downstream signaling is largely dependent on the N-terminus, as the domains 

participate in key homotypic protein-protein interactions.226 Following activation, 

receptor oligomerization occurs through the NACHT domain located centrally on the 

NLR.225 Lastly, the C-terminus contains a leucine-rich repeat (LRR) domain responsible 

for PAMP and DAMP detection.225 The new system of nomenclature divides the NLR 

family into five main subfamilies according to each receptor’s variable N-terminal 

domain, specifically, (1) NLRA, acidic transactivating domain containing, (2) NLRB, BIR 

domain containing, (3) NLRC, CARD domain containing, (4) NLRP, PYD domain 

containing and (5) NLRX, unclassifiable N-terminal domain (Figure 10).224 Activation of 

NLR signaling is highly interactive with and complementary to TLR signaling, and 

certain signaling intermediates overlap between the two pathways.226 Typically three 

targets may become activated following NLR pathway activation, including NF-κB, 

MAPKs and caspase-1.226 Only five NLR family members function to mature pro-

caspase-1 to its active form, and these do so through self-oligomerization into large, 

multi-protein complexes called inflammasomes.226 

Inflammasome Complexes and Canonical Activation and Signaling. Critical 

to innate immunity and the generation of an immune reaction is the efficient detection of 

pathogens that have gained entry into the cytosol, as well as the recognition of host-

derived signals of danger or damage. Five specific NLR family members mediate these 

detection events, namely NLRC4, pyrin (also known as marenostrin or TRIM20), absent 

in melanoma 2 (AIM2), NLRP1 and NLRP3.227 Upon detection of an activating signal 

within the cytosol, these NLR members self-oligomerize into wheel-like macromolecular 
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complexes called inflammasomes, which are named for the NLR protein by which they 

form (Figure 11A).227  

 

 

Figure 10. Domain organization of the nucleotide-binding oligomerization domain 
(NOD)-like receptors (NLRs). The NLRs are classified into five distinct families 
according to the variable N-terminal domain possessed by each receptor. Four distinct 
N-terminal domains exist, namely CARD (caspase activation and recruitment domain), 
AD (acidic transactivating), BIR (Baculovirus inhibitor of apoptosis repeat) and  PYD 
(pyrin domain). Other abbreviations include NACHT (NAIP, CIITA, HET-E, and TP-1), 
NAD (NACHT-associated domain), LRR (leucine-rich repeat), FIIND (function to find) 
and X (unknown). 
 

In 2002, Martinon et al. identified a multi-protein complex responsible for 

activating caspase-1, producing mature pro-inflammatory cytokines and mediating a 
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cytolytic, inflammatory cell death, called pyroptosis.228 This complex was coined the 

inflammasome, and the group specifically identified NLRP1.228 While mice have three 

paralogs of Nlrp1, namely Nlrp1a-1c, the human genome encodes a single NLRP1 

gene.229 A variety of PAMPs activate NLRP1, including anthrax lethal toxin, muramyl 

dipeptide, and even metabolic changes like reductions in intracellular ATP levels.229 

Perhaps most relevant for this manuscript, NLRP1 expression is high within the 

hematopoietic compartment, in both the myeloid and lymphoid lineages.230 Masters et 

al. demonstrated that a point mutation in Nlrp1a (Q593P), resulting in a constitutively 

active inflammasome complex, leads to aberrant activation of caspase-1.231 

Homozygous Nlrp1Q593P/Q593P mice succumb to a highly lethal inflammatory phenotype, 

with death ensuing at approximately 4 months of age.231 Prolonged activation of Nlrp1 

resulted in severe cytopenias, aberrant myeloid lineage maturation, immune 

suppression and HSPC death.231 Notably, this phenotype was also evidenced in mice 

subjected to sustained hematopoietic stress.231 Together, these data suggest that the 

NLRP1 inflammasome may play an important role in aberrant hematopoiesis.  

 Since the discovery of NLRP1, four additional inflammasome complexes have 

been identified. Not only do the activating signals vary between inflammasome 

complexes, but so too does expression, suggesting that particular complexes are most 

pertinent in certain tissues.230 The absent in melanoma 2 (AIM2) inflammasome binds 

cytoplasmic double stranded DNA (dsDNA) and some dsDNA viruses through its 

oligonucleotide/oligosaccharide-binding domain.232,233 This HIN-200 domain is unique to 

the AIM2 inflammasome as compared to other inflammasome-forming NLR family 
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members. Activation of caspase-1 follows AIM2PYD-dependent recruitment of ASC.232,233 

Moreover, the NLRC4 inflammasome responds to a variety of bacterial components, 

including flagellin, Gram-negative bacteria-derived needle proteins and type III secretion 

system (TTSS) rod components.234 NLRC4 inflammasome assembly requires a physical 

association with NAIP in humans, and NAIP2 and NAIP5 in mice, which function as the 

sensor of these cytoplasmic bacterial products.234 The binding of NAIP members to 

NLRC4 results in inflammasome assembly, caspase-1 activation and the generation of 

an immune response.234 Furthermore, pyrin, also known as TRIM20, is the most 

recently discovered inflammasome complex.235 Caspase-1 is generated in response to 

the pyrin-dependent detection of bacterially-mediated modifications of Rho GTPase 

family members.235 More specifically, monoglycosylation of Rho family members on a 

particular threonine residue prevents GTP binding, resulting in Rho inactivation.235 

Interestingly, the PRY/SPRY domain of pyrin that is located at its N-terminus, interacts 

directly with NLRP1, NLRP3 and pro-caspase-1.236 This interaction mediates the 

autophagy-specific degradation of these inflammasome components, illustrating direct 

regulation of one inflammasome complex over another.236 Lastly, the best characterized 

inflammasome-forming protein is undoubtedly NLRP3, which will be discussed in more 

detail in another portion of this manuscript. 

Inflammasome complexes function to drive the maturation of caspase-1 and the 

generation of pro-inflammatory cytokines IL-1β and IL-18.227,237 Pro-caspase-1, which 

contains a caspase recruitment domain (CARD), will be recruited to the site of the 

assembled inflammasome complex through homotypic death domain fold motif 
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interactions. Specifically, the CARD and pyrin domain (PYD) motifs are important for 

caspase-1 activation.238 NLR proteins that contain a CARD domain, specifically NLRC4 

and NLRP1, can directly recruit pro-caspase-1 through NLRCARD and pro-caspase-1CARD 

interactions (Figure 11B).239 Interesting, pro-caspase-1 polymerization in the 

inflammasome was shown to occur through the interaction of CARD domains, leading to 

enhanced cleavage and proteolytic activity.239 

Alternatively, the other inflammasome forming proteins, specifically pyrin, AIM2 

and NLRP3, lack a CARD domain and instead express a PYD motif.239 These receptors 

rely on the adaptor protein apoptosis-associated speck-like protein containing a CARD 

(ASC) (Figure 11C).238 Specifically, the PYD-only receptors and NLRP1, which contains 

both a CARD and a PYD domain, use an ASC-dependent mechanism for 

inflammasome oligomerization and caspase-1 activation.238 In support, mice deficient in 

ASC mature significantly less active caspase-1 and IL-1β than both wild-type and 

heterozygous counterparts.240 Murine ASC is highly homologous to human ASC, both in 

structure and function, suggesting evolutionary conservation.241 ASC has a bipartite 

domain structure, with an N-terminal PYD domain and a C-terminal CARD domain.238 

The active NLR receptors recruit ASC through NLRPYD and ASCPYD interactions, 

resulting in the nucleation and polymerization of ASC at the site of the inflammasome 

complex (Figure 11D).239 The PYD-PYD interactions are rather rigid in nature, allowing 

for the subsequent nucleation and polymerization of pro-caspase-1 (Figure 11D).241 

Specifically, ASC will recruit pro-caspase-1 to the inflammasome complex, whereby 

ASCCARD and pro-caspase-1CARD domain interactions allow for pro-caspase-1 
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nucleation.239 The CARD-CARD interactions do maintain more flexibility than the rather 

inflexible PYD cores, which helps regulate the density of pro-caspase-1 at the site of 

activation.241 Once in appropriate proximity, pro-caspase-1 will auto-cleave and activate, 

resulting in downstream signaling. Both the ASC-dependent and ASC-independent 

mechanisms of caspase-1 activation fall under canonical inflammasome signaling.  

 

Figure 11. Activation of pro-caspase-1 by inflammasome complexes requires 
ASC-dependent or ASC-independent nucleation and polymerization. (A) Depicted 
in the schematic is the NLRP3 inflammasome. Once an activating PAMP/DAMP signal 
is detected, the inflammasome will oligomerize into a cytosolic, wheel-like complex 
called the inflammasome. (B) Inflammasome-forming NLRs that contain a CARD 
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domain can directly recruit pro-caspase-1 through NLR
CARD

 and pro-caspase-1
CARD

 
interactions. The domain structure of NLRP1 is depicted. As NLRP1 additionally 
contains a PYD motif, it can also recruit pro-caspase-1 via the adaptor protein ASC. (C) 
The other inflammasome forming proteins, namely pyrin, AIM2 and NLRP3, which is 
depicted in the schematic, contain a PYD domain motif only. These receptors recruit 
pro-caspase-1 indirectly through ASC, which subsequently recruits pro-caspase-1 
through ASC

CARD
 and pro-caspase-1

CARD
 homotypic interactions. (D) NLRP3-mediated 

activation of pro-caspase-1 is detailed here. Activated NLRP3 recruits ASC through 
NLRP3

PYD
 and ASC

PYD
 domain interactions. ASC will nucleate and polymerize into a 

filamentous structure that is rather rigid in nature. Next, ASC will recruit pro-caspase-1 
through CARD-CARD domain interactions, leading to nucleation of pro-caspase-1. As 
the homotypic CARD interactions are more flexible, they help regulate the density of 
pro-caspase-1, leading to facilitated and enhanced auto-cleavage and activation of the 
caspase.  
 

Non-Canonical Inflammasome Signaling. Most basically, the processing of 

pro-caspase-1 and the generation of pro-inflammatory cytokines through 

inflammasome-dependent mechanisms defines canonical inflammasome signaling. 

Approximately five years ago, the non-canonical inflammasome was identified in mice 

through a series of experiments using caspase-11-/- BM-derived macrophages 

(BMDM).242 Caspase-11 activation drives two central signaling events that together 

characterize the non-canonical inflammasome.242 Specifically, activation of caspase-11 

results in (i) NLRP3-independent pyroptotic cell death and (ii) concurrent NLRP3-

dependent activation of caspase-1, which is necessary to generate the mature forms of 

IL-1β and IL-18 (Figure 12).242 Murine caspase-11-directed signaling is matched in 

humans by its pro-inflammatory caspase orthologs, namely caspase-4 and caspase-

5.243 Furthermore, in myeloid cells, caspase-4, -5 and -11 were shown to be activated in 

response to gram-negative bacteria whereby they detect the presence of cytoplasmic 

LPS.243,244 Detection of LPS is mediated by the caspase CARD domain, leading to auto-
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activation and dimerization of the caspase into its mature, proteolytically active 

form.243,244 Alternative activators of caspase-4, -5 or -11 are still under investigation. 

In canonical inflammasome signaling, activation of caspase-1, the initiator 

caspase, stems from NLR-dependent PAMP/DAMP detection, leading to inflammasome 

complex assembly and activation. Contrary to this mechanism, in non-canonical 

inflammasome signaling, caspase-4, -5, or -11 function as both the PAMP/DAMP 

detection ‘receptor’ as well as the initiating caspase.243,245 Although these caspases are 

capable of directly triggering pyroptosis, they are unable to mature pro-IL-1β and IL-18 

independently. Instead, using potent NLRP3 activators, like nigericin, as well as small 

molecule inhibitors of NLRP3, specifically compound MCC950, Baker et al. reported that 

cytokine maturation occurs downstream of caspase-4, -5 or -11 activation through an 

NLRP3-dependent mechanism that results in activation of caspase-1 followed by 

cytokine processing.245 More specifically, the dramatic drop of intracellular potassium 

concentration triggers NLRP3 inflammasome assembly and activation (Figure 12).246,247 

Whether capase-4, -5 or -11 directly or indirectly trigger changes in potassium 

concentration remains to be determined.246,247 

In non-canonical inflammasome signaling, caspase-4-, -5- or -11-dependent 

induction of pyroptotic cell death occurs through gasdermin D (GSDMD) cleavage and 

activation (Figure 12).244,248 GSDMD belongs to the gasdermin family of proteins whose 

physiological roles are still poorly understood.248 Murine and human GSDMD maintain 

approximately 72% sequence homology, which results in similar functionality.248 Murine 

GSDMD is cleaved by active inflammatory caspases after amino acid 276 and human 
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GSDMD after 275.248 This results in two GSDMD cleavage products, namely the 

inactive C-terminal (~22 kDa) and the active N-terminal (~31 kDa) fragments.244 

Whereas full-length (~53 kDa) GSDMD and the C-terminal fragment cannot induce 

pyroptosis, the N-terminal fragment drives cell death.244 Intramolecular interactions 

between the C-terminal and N-terminal portion of pro-GSDMD maintain the protein in an 

inactive state.248 Cleavage relieves this suppressive mechanism, releasing the N-

terminal fragment.248 The N-terminal p30 fragment serves as the executioner 

responsible for membrane pore formation. Recent investigations have shown that the 

GSDMD N-terminal p30 fragment oligomerizes before binding to phosphatidylinositol 

phosphates and phosphatidyl serines restricted to the cell membrane inner leaflet to 

create non-selective membrane pores with an inner diameter of 10-20 nanometers in 

size.249-252 Interestingly, GSDMD has been identified as a substrate of caspase-1, 

suggesting that the physiological functioning of GSDMD overlaps between canonical 

and non-canonical inflammasome signaling.244 A summary of non-canonical 

inflammasome signaling is found in Figure 12.  

 

The NLRP3 Inflammasome 

 

NLRP3 Agonists. Undoubtedly, NLRP3 is the best characterized and most 

highly understood inflammasome-forming protein. Expression of NLRP3 largely 

overlaps with NLRP1 and may be found in numerous cell types.230 Most importantly, 

NLRP3 is readily expressed in the myeloid and lymphoid lineages of the hematopoietic 
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system.230 Over a decade ago, murine BM-derived macrophages deficient in Nlrp3 were 

shown to lack caspase-1 activation.253 These data elegantly illustrate, from the most 

basic of viewpoints, that NLRP3 functions to activate caspase-1, elaborate inflammatory 

cytokines and generate an effective and potent innate immune response.253 

Nevertheless, many questions remain regarding the complete biology governing the 

functionality of this receptor, including its mechanism of activation, mode of agonist 

sensing, regulation and therapeutic targeting, among others. 

 

 

Figure 12. The non-canonical inflammasome signaling pathway. (A) Non-canonical 
signaling begins with the PAMP/DAMP-specific detection by pro-caspase-4, -5 or -11. 
Detection is mediated by direct interaction of the PAMP/DAMP with the CARD domain 
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of the caspase, leading to caspase dimerization and activation. (B) Through a direct or 
indirect mechanism, active (a)-caspase-4, -5 or -11 mediate a dramatic reduction in 
intracellular potassium concentration. This serves as a trigger for (C) NLRP3 
inflammasome activation. The inflammasome mediates activation of pro-caspase-1, 
which subsequently matures pro-IL-1β and pro-IL-18, leading to cytokine release. (D) 
Concurrently, a-caspase-4, -5 or -11 cleave gasdermin D (GSDMD), which releases the 
active N-terminal fragment. This fragment is necessary to signal pyroptotic cell death.  
 

With respect to activation signals, NLRP3 is unique from other inflammasome-

forming proteins. Whereas other complexes mainly detect PAMPs, NLRP3 

predominantly detects DAMP signals.254 Furthermore, NLRP3 detects a very extensive 

set of both physically and structurally diverse and dissimilar agonists, which is highly 

unusual compared to the activators detected by other complexes.254,255 Generally, 

NLRP3 is activated by three types of agonists, including extracellular microbial products 

or toxins (LPS, nucleic acids, muramyl dipeptide, nigericin), environmental irritants and 

inorganic crystals (asbestos, silica, alum), and DAMPs (ROS, ATP, hyaluronan, 

S100A9).254,255 The mechanism by which such diverse proteins and products activate 

NLRP3 is still largely unknown and represents one of the most important unanswered 

questions in the field to date.  

NLRP3 Inflammasome Activation: Signal 1. It is generally accepted that 

NLRP3 inflammasome activation requires two steps, namely an initiating, priming signal 

followed by a secondary, activation signal.255,256 This two-step mechanism is conserved 

between mice and humans, and represents just one of many regulatory mechanisms 

that prevent unwarranted and damaging inflammasome activation.256 Surface and 

cytoplasmic receptor signaling culminating in NF-κB activation primes the 

inflammasome and functions to provide signal 1.255 In the absence of transcriptional 



www.manaraa.com

 
 

68 

priming, NLRP3 will generate an inadequate or simply no inflammatory response, even 

in the presence of an appropriate signal 2.255 IL-1R, CD33, various TLRs and NLRs 

represent just a few receptors that can prime the inflammasome.255 As basal cellular 

concentrations of both NLRP3 and pro-IL-1β are insufficient for the generation of an 

inflammasome-mediated immune response, NF-κB-dependent transcriptional priming 

must occur prior to the detection of signal 2.256 Conversely, levels of pro-caspase-1, IL-

18 and ASC are basally sufficient, and therefore do not require priming.255 Notably, NF-

κB-dependent priming of NLRP3 occurs upstream of ASC recruitment, as 

inflammasome activation fails to occur in the context of ASC overexpression.256 

Once primed, NLRP3 is maintained in an ubiquitinated, auto-repressed and 

inactive configuration within the cytosol.254,255 This additional regulation of NLRP3 at the 

post-transcriptional level prevents exposure of the nucleotide-binding domain (NBD) of 

NLRP3, effectively preventing oligomerization into mature inflammasome complexes.254 

Upon detection of an appropriate activating signal, the leucine-rich repeat (LRR) domain 

of NLRP3 is deubiquitinated by BRCA1-BRCA2-containing complex 3 (BRCC3) in mice, 

and BRCC36 (also known as BRCC3) in humans.257 Subsequently, NLRP3 opens its 

configuration permissive to oligomerization. While transcriptional priming, or signal 1, 

occurs independently of BRCC3, it is indispensable for NLRP3 inflammasome activation 

following detection of signal 2.257 

NLRP3 Inflammasome Activation: Signal 2. Given that NLRP3 is activated by 

such a diverse set of agonists, it is unlikely that direct binding is responsible for 

inflammasome activation.254 Generally, three hypotheses exist for signal 2, or the signal 
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that induces NLRP3 activation and oligomerization into the inflammasome complex.254 

Foremost, reactive oxygen species (ROS) have been shown to induce both priming and 

activation of the NLRP3 inflammasome.258 This can occur through an NADPH oxidase 

(NOX)-dependent mechanism.258 The NOX proteins, of which there are six homologs in 

humans, are ubiquitously expressed and function to generate superoxide and ROS by 

the transfer of electrons across the plasma membrane.259 Both siRNA-directed silencing 

as well as pharmacologic inhibition of NOX using diphenyleneiodonium (DPI) results in 

a significant reduction in NLRP3 priming, caspase-1 activation and IL-1β production.258  

Using a yeast two-hybrid approach, thioredoxin-interacting protein (TXNIP) was 

shown to bind to and negatively regulate thioredoxin (TRX), a protein with roles in 

multiple biological processes.260 Binding of TXNIP to TRX is redox-dependent, as TRX 

is oxidized in the presence of high ROS concentration, liberating TXNIP from TRX.261 

Subsequently, TXNIP was shown to bind to the LRR of NLRP3, resulting in 

inflammasome assembly and activation.261 Suppression of TXNIP in the THP-1 cell line 

using siRNAs resulted in a significant reduction in caspase-1 activation and IL-1β 

secretion.261 Additionally, BMDM from Txnip-/- mice corroborate these findings, 

illustrating that the TXNIP/NLRP3 axis is significant in vivo and functionally activates 

NLRP3 downstream of ROS.261 Interestingly, in a model of type 2 diabetes, Masters et 

al. was unable to demonstrate neither binding of TXNIP to NLRP3, nor a role of TXNIP 

in the maturation of IL-1β.262 Perhaps these conflicting data may be reconciled by the 

possibility of cell- or context-specific mechanisms leading to NLRP3 activation 
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downstream of secondary activating signals. To date, the precise mechanism leading to 

NLRP3 inflammasome activation downstream of ROS production is still unknown. 

Notably, in the context of MDS, genomic alterations increase ROS in a NOX-

dependent manner.263 The extent of ROS production increases with the number of 

mutations, as well as with disease progression.263 Moreover, the DAMP proteins 

S100A8 and S100A9, which have been shown to be increased in lower-risk MDS,140 are 

scaffold proteins for the assembly and activation of the NOX complex within 

neutrophils.264,265 S100A8/A9 physically interact with cytosolic NOX complex members, 

resulting in enhanced oxidase activity and enzyme kinetics.265 Studies in PB 

mononuclear cells (PB-MNC) demonstrated that S100A8/A9 induce NF-κB-mediated 

transcriptional priming of NLRP3 and pro-IL-1β via NOX-dependent generation of 

ROS.266 Additionally, treatment of PB-MNC with S100A8/A9 increased NLRP3 

inflammasome activation, with subsequent caspase-1 activation and IL-1β secretion.266 

Lastly, mitochondria-derived ROS also activate NLRP3, resulting in caspase-1 

activation and cell death.267,268 

Within the cytosol, ROS can trigger permeabilization of the mitochondrial 

membrane as well as of the lysosomal membrane, which both trigger NLRP3 

inflammasome activation.267 Indeed, NLRP3 appears to be a sensor of organelle 

dysfunction.267,269 A lysosome/cathepsin B-dependent mechanism represents the 

second hypothesis allowing for NLRP3 inflammasome activation. In PB-MNCs, 

phagocytosis of crystalline substances, like silica and alum, results in lysosomal 

swelling, damage and spillage of lysosomally-contained material into the cytosol.269 This 
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results in the release of the lysosomal protease cathepsin B, which by a direct or 

indirect mechanism activates the NLRP3 inflammasome, triggering caspase-1 activation 

with IL-1β secretion.269 A conserved mechanism is evident in Alzheimer’s disease, 

contributing to disease pathobiology.270 Phagocytosis of amyloid β, an endogenous 

DAMP peptide, by microglial cells damages lysosomes, resulting in cathepsin B release 

and activation of the NLRP3 inflammasome complex.270 Undoubtedly, phagocytosis of 

other DAMPs capable of triggering lysosomal membrane permeabilization and spillage 

of lysosomal contents into the cytosol would also activate NLRP3.   

Lastly, the final hypothesis for NLRP3 inflammasome activation is characterized 

by upstream changes in intracellular cation concentrations.254 Potassium efflux may be 

elicited by a variety of NLRP3 agonists, resulting in NLRP3 inflammasome formation, 

caspase-1 activation and IL-1β generation.271 The opening of ion channels or 

alternatively, the formation of pores by bacterial or pathogenic toxins likely mediates K+ 

efflux.254,271 Conversely, increased cytoplasmic concentration of Ca2+ modulates NLRP3 

inflammasome activation.272 ER stress frequently results in rapid increases in Ca2+, 

recently identified to trigger inflammasome formation.272 Moreover, lysosomal 

membrane permeabilization as well as overt rupture function to mobilize Ca2+, which 

can mediate subsequent plasma membrane pore permeability and the efflux of K+.271,272 

In this way, both K+ and Ca2+ activate NLRP3 inflammasome complexes at the level of 

signal 2. 

Endogenous Regulation of the NLRP3 Inflammasome. In addition to the 

requisite two signals necessary for NLRP3 inflammasome assembly and activation, a 
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number of decoy proteins have originated from gene duplication events that further 

regulate NLRP3 activation.273-277 To start, three genes have originated adjacent to one 

another on chromosome 11q22, near caspase-1, and serve as negative regulators of 

caspase-1-dependent activation of IL-1β.273-275 Specifically, ICEBERG, inhibitory CARD 

(INCA) and CARD only protein (COP) share 52%, 81% and 97% sequence identity to 

the CARD domain, located within the prodomain of pro-caspase-1.274,275 These proteins 

are induced by pro-inflammatory stimuli, resulting in their expression and the 

subsequent extinction of caspase-1-dependent responses.273-275 Through directly 

binding to the prodomain of pro-caspase-1, ICEBERG, INCA and COP inhibit the 

activation of caspase-1 by blocking dimerization, which is required for conversion of the 

zymogen to its active form.273-275 In this way, these endogenous inhibitors prevent 

unwarranted, exacerbated and accidental caspase-1 activation and limit IL-1β-induced 

inflammation.273-275  

Additionally, pyrin-domain (PYD) only protein 1 (POP1) represents an alternative 

negative regulator of NF-κB, ASC and NLRP3.276,277 POP1 is thought to have generated 

from gene duplication events, as it shares approximately 88% sequence identity to the 

PYD of the NLRP3 adaptor protein ASC. Foremost, POP1 directly interacts with the IKK 

complex responsible for activating NF-κB in response to cytokine stimulation.276 This 

results in the inhibition of NF-κB activation, as well as the repression of NF-κB-inducible 

target genes.276 Moreover, POP1 directly binds to ASCPYD, which blocks ASCPYD and 

NLRP3PYD domain interactions, effectively preventing NLRP3 assembly, ASC nucleation 

and polymerization, caspase-1 activation and the release of mature IL-1β and IL-18.277 



www.manaraa.com

 
 

73 

While these negative regulatory mechanisms function to limit and fine-tune 

inflammasome-dependent responses, excessive and prolonged activation of the NLRP3 

inflammasome has been pathobiologically implicated in a wide range of autoimmune 

diseases and inflammatory conditions.254 

Evidence of Pyroptosis in the MDS Literature. Over two decades ago, Mundle 

et al. demonstrated that approximately 40% of lower-risk MDS cases demonstrate 

significantly increased IL-1β secretion within the bone marrow, which positively 

correlated with the amount of DNA fragmentation.99 More importantly, treatment of BM-

MNC with a caspase-1-specific inhibitor reduced DNA fragmentation and IL-1β 

secretion, implicating caspase-1 activation in the cell death observed in MDS.99 In 

corroboration of these findings, caspase-3 activation was shown to occur downstream 

of caspase-1 activation in MDS, illustrating a sequence of caspase activation consistent 

with pyroptosis rather than apoptosis.278 More recently, a non-canonical role for NLRP3 

was described in regulating receptor-mediated apoptosis in epithelial cells. In response 

to TNF-α/TNFR signaling, NLRP3, ASC and pro-caspase-8 are recruited to the 

mitochondria where NLRP3-dependent processing of pro-caspase-8 occurs.279 As TNF-

α is overexpressed in MDS and the extrinsic apoptotic pathway is activated, it is likely 

that such a mechanism additionally occurs within this context.  

Beyond basal activation, in overstimulated or overstressed conditions, autophagy 

synergizes with inflammasome activation to augment the inflammatory response.280 

Accordingly, non-canonical roles of autophagy-related proteins are continually being 

described, including atypical roles in antigen presentation and non-conventional 

secretion.188 Stimulation of autophagy in the context of NLRP3 inflammasome activation 
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results in co-localization of autophagosomes with IL-1β and HMGB1. Subsequently, 

through non-conventional secretion, the autophagic machinery mediates secretion of 

inflammasome substrates, like IL-1β and IL-18, as well as potent DAMPs into the 

extracellular milieu.281 As a consequence of mitochondrial damage, mitochondrial-

derived ROS are increased, which can enhance NLRP3 inflammasome activation and 

thereby activation of caspase-1 and generation of IL-1β.268 These findings help 

vindicate why mitochondrial dysfunction is often linked to inflammatory disease, both of 

which are manifest in MDS. Furthermore, in the context of oxidative stress, caspase-1 

augments mitophagic flux by promoting up-regulation of beclin 1.282 A recent publication 

illustrated that both mRNA and protein expression of beclin 1 are increased in lower-risk 

MDS.283 Although the findings in this manuscript are the first to link NLRP3 

inflammasome activation and pyroptotic cell death to the pathobiology of MDS, the 

literature supports, both directly and indirectly, the role of caspase-1 and NLRP3 

activation in these disorders. 

 

β-Catenin 

 

Canonical Wnt/β-Catenin Signaling. The canonical Wnt/β-catenin signaling 

pathway, which was first identified in Drosophila, is implicated in supporting self-

renewal, proliferation and cell survival.284 This is accomplished through the activation of 

β-catenin, which will translocate into the nucleus and bind transcriptional activators, 

resulting in gene transcription.284 Understandably so, mutations in this signaling 

pathway are commonly observed in human cancer.284  
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In the basal state, β-catenin activation is repressed by the β-catenin destruction 

complex. The complex consists of two tumor suppressors, Axin and adenomatous 

polyposis coli (APC), as well as two constitutively active serine/threonine kinases, or 

casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3).284 Axin, the main 

scaffold for the destruction complex, directly interacts with β-catenin. CK1 and GSK3 

will deliver phosphorylation marks on β-catenin, resulting in its recognition by the E3 

ubiquitin ligase, beta-transducin repeat containing protein (β-TrCP).284 Ubiquitination of 

β-catenin by β-TrCP targets it for proteasomal degradation, effectively eliminating β-

catenin-mediated transcription effects in the absence of appropriate pathway activation. 

Wnt/β-catenin pathway inactivation is summarized in Figure 13A-D. 

Conversely, canonical Wnt/β-catenin signaling initiates with the binding of a Wnt 

ligand to a transmembrane receptor complex consisting of Frizzled (Fz) and low-density 

lipoprotein receptor-related protein 5 (LRP5) or 6 (LRP6).284 Next, Dishevelled (Dvl) will 

bind the cytoplasmic part of Fz, allowing for recruitment of Axin to the LRP5/6 tail.284 

These recruitment events sequester Axin, preventing the formation of the destruction 

complex and subsequently allow for the accumulation of cytoplasmic β-catenin.284 

Ultimately, β-catenin translocates into the nucleus and binds transcriptional activators, 

like T cell factor (TCF) and lymphoid enhancing factor (LEF), resulting in gene 

transcription.284 The signaling cascade resulting from Wnt/β-catenin pathway activation 

is summarized in Figure 13E-G. Though β-catenin activation vastly alters gene 

expression, cyclin D1 and c-myc are among the best characterized downstream targets. 

Notably, in a cohort of sixteen MDS patients, approximately 90% of all CD34+ BM-MNC 
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Figure 13. Canonical Wnt/β-catenin signaling depicted in the context of pathway 
inactivation and activation. The signaling events resulting from the lack of a pathway 
activating signal are shown in A-D. (A) Without ligand binding to the transmembrane 
Frizzled (Fz) or LRP5/6 receptors, the (B) β-catenin destruction complex, consisting of 
Axin, APC, CK1 and GSK3, will initiate degradation of β-catenin. The serine/threonine 
kinases CK1 and GSK3 phosphorylate β-catenin, which is recognized by (C) β-TrCP, an 
E3 ubiquitin ligase. Ubiquitination of β-catenin targets it for proteasomal degradation. 
(D) β-catenin-mediated transcriptional activation of TCF/LEF controlled genes is 
repressed. The signaling events resulting from pathway activation are shown in E-G. (E) 
Binding of a Wnt ligand to Frizzled/LRP5/6 allows for recruitment of Dishevelled (Dvl) 
and Axin to the cytoplasmic tails of Fz and LRP5/6, respectively. (F) The destruction 
complex will not form, allowing for the cytoplasmic accumulation of β-catenin. (G) 
Translocation of β-catenin into the nucleus results in activation of TCF/LEF controlled 
genes, leading to gene transcription. 
 

were c-myc+, as measured by flow cytometry.198 Expression of c-myc was greater in 

MDS compared to normal controls, and increased with disease risk.198 These findings 

suggest a role for aberrant β-catenin activation in MDS, likely contributing to survival of 

the MDS clone during disease progression.  
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Activation of β-Catenin is Regulated by Oxidative Stress. Extensive evidence 

indicates that oxidative stress enhances activation of β-catenin, resulting in increased 

expression of its downstream target genes, including c-myc. Notably, Rac proteins, 

members of the Rho family of small GTPases, associate with NADPH oxidase (NOX) 

complexes and enhance NOX activation.285 Rac1 activation was shown to be a requisite 

for the nuclear translocation of β-catenin.285 NOX members, who function to generate 

ROS through the transfer of electrons across membranes, are central producers of 

ROS.259 Therefore, NOX activation and NOX-dependent production of ROS would be 

expected to promote β-catenin activation. Accordingly, not only are β-catenin gene 

targets markedly suppressed in NOX1KO mice, activity of the β-catenin destruction 

complex member GSK3 is significantly increased.286 These data are particularly 

interesting, given that S100A8/A9, the DAMP signals increased in lower-risk MDS,140 

function as a scaffold for the membrane assembly and activation of the NOX complex, 

and additionally increase NOX function.265 

Moreover, an unbiased, mass spectrometry pull-down approach to identify 

additional binding partners of dishevelled (Dvl) identified nucleoredoxin (NRX) as a 

novel interaction partner.287 NRX, related to thioredoxin (TRX), was confirmed through 

immunoprecipitation experiments to bind Dvl directly.287 Binding of NRX-Dvl is Wnt 

ligand-independent, but rather redox-dependent. In the absence of oxidative stress, 

NRX specifically binds Dvl, illustrating a mechanism whereby NRX negatively regulates 

β-catenin activation.287 In contrast, oxidation of NRX liberates Dvl, allowing Dvl to inhibit 



www.manaraa.com

 
 

78 

the β-catenin destruction complex and enhance β-catenin nuclear translocation.287 

These effects of oxidative stress on β-catenin activation are summarized in Figure 14. 

 

 

Figure 14. Oxidative stress positively regulates β-catenin activation and 
signaling. (A) Activation of the NADPH oxidase (NOX) complex is enhanced by the 
DAMP proteins S100A8/A9 as well as Rac proteins. NOX generates reactive oxygen 
species (ROS) by the transfer of electrons across the plasma membrane. (B) NOX-
derived ROS can oxidize nucleoredoxin (NRX), a binding partner and negative regulator 
of dishevelled (Dvl) and β-catenin signaling. Once oxidized, NRX dissociates from Dvl, 
allowing Dvl to (C) bind to Axin and prevent the formation of the β-catenin destruction 
complex. As a result, β-catenin accumulates within the cytoplasm and can translocate 
into the nucleus and alter gene transcription.   
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CHAPTER 2 

The NLRP3 Inflammasome Functions as a Driver of the Myelodysplastic 
Syndromes (MDS) Phenotype  

 

Note: This chapter has been previously published in the journal Blood, Basiorka et al. 
Blood. 2016 Oct 13, and has been reproduced in this manuscript with permission from 
the publisher. 
 

Introduction 

Myelodysplastic syndromes (MDS) are hematopoietic stem cell malignancies 

characterized by dysplastic and ineffective hematopoiesis. MDS bone marrow 

precursors typically display larger cell size, deregulated proliferation and maturation, 

and accelerated attrition by programmed cell death.45,288,289 Despite these shared 

phenotypes, MDS harbor a spectrum of clonal chromosome abnormalities and somatic 

gene mutations, the latter most commonly involving genes encoding RNA splicing and 

epigenetic regulatory proteins.84,290 How such diverse genetic alterations initiate a 

common MDS phenotype is unexplained. Apoptosis, a non-inflammatory form of 

programmed cell death, has been implicated in the ineffective hematopoiesis in MDS 

based upon membrane externalization of phosphatidylserine, mitochondrial 

depolarization and DNA fragmentation.196,197,203 However, the cytokine profile and 

cellular milieu in MDS instead support aberrant innate immune activation.291 Indeed, 

inflammatory cytokines such as interleukin-1β (IL-1β), tumor necrosis factor-α, 

transforming growth factor-β, IL-6 and others are generated in excess in MDS, 
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accompanied by bone marrow expansion of hematopoietic-inhibitory, myeloid derived 

suppressor cells (MDSC) activated by the danger associated molecular pattern (DAMP) 

S100A9, a Toll-like receptor (TLR)-4 and CD33 ligand.99,140,144,292 Furthermore, MDS 

hematopoietic stem and progenitor cells (HSPC) overexpress TLRs accompanied by 

activation of respective signaling intermediates, which have been implicated in the 

aberrant proliferation of MDS HSPC and in the pathogenesis of peripheral blood 

cytopenias.112,116,293  

Recent studies have shown that activation of TLRs by select DAMPs can trigger 

pyroptosis, a novel caspase-1-dependent pro-inflammatory cell death that involves the 

activation of ion gradients, cell swelling, the release of IL-1β and IL-18, intracellular 

DAMPs and other pro-inflammatory cytokines.211,212,292,294 Pyroptosis is mediated by the 

formation of inflammasome complexes, which are cytosolic heptameric oligomers 

composed of nucleotide-binding domain and leucine-rich repeat containing pattern 

recognition receptors (NLRs). The best characterized NLR, NLRP3, is a redox-sensitive 

cytosolic sensor that undergoes a conformational change in response to DAMP 

interaction to recruit the ASC (apoptosis-associated speck-like protein containing a 

caspase-recruitment domain) adaptor protein. This interaction in turn triggers ASC 

polymerization and nucleation of large cytoplasmic aggregates referred to as ASC 

specks.239 ASC specks serve as a platform recruiting pro-caspase-1 monomers that are 

activated by proximity-induced autocatalysis to initiate proteolytic processing of pro-IL-

1β and pro-IL-18 to their mature, active forms.211 Inflammasome activation involves two 

steps beginning with NFκB-induced transcriptional priming of inflammasome proteins, 

followed by cation channel activation, cell volume expansion and inflammasome 
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component assembly.211,212,294 NLRP3 is activated by diverse DAMP signals, including 

S100A9 homodimers and S100A8/9 heterodimers that function as alarmins to induce 

NADPH oxidase and generate reactive oxygen species (ROS).266,295,296  

Here we show that S100A9 and ROS, generated in response to NLRP3 

inflammasome activation or somatic gene mutations, serve as DAMP signaling 

intermediates responsible for inflammasome-mediated pyroptosis and β-catenin 

activation in MDS. Remarkably, disabling this inflammasome circuit restores effective 

hematopoiesis in MDS. Collectively, these findings define key biological effectors of the 

MDS phenotype and suggest novel strategies for therapeutic intervention. 

 

Results 

 

MDS HSPC manifest inflammasome activation and pyroptosis. To determine 

if pyroptosis was primed in MDS, expression of genes encoding inflammasome proteins 

was evaluated in BM-MNC isolated from MDS patients (n=10) compared to age-

matched normal controls (n=5). MDS specimens displayed marked up-regulation of 

inflammasome transcripts (Figure 15A) where caspase-1 (CASP1) mRNA levels were 

increased 209-fold and NLRP3 48.1-fold in MDS; in contrast, levels of caspase-3 

(CASP3) mRNA, the canonical apoptotic caspase, were similar in MDS and normal BM-

MNC. Further, mRNAs encoding the inflammatory cytokines IL-1β and IL-18 were 

increased 3.7-fold and 29.6-fold in lower-risk MDS (n=5) versus normal BM-MNC (n=5), 

whereas expression was only increased 1.1-fold and 9.2-fold in higher-risk MDS 

specimens (n=5). Confocal fluorescence microscopy confirmed selective activation of 
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Figure 15. Fulminant pyroptosis is manifest in HSPC and progeny in MDS. (A) 
qPCR analyses of expression of pyroptosis-associated genes in BM-MNC isolated from 
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MDS patient specimens (n=10 total; n=5 lower- and n=5 higher-risk disease) compared 
to normal BM-MNC (n=5). (B) Representative confocal fluorescence micrograph (2520x 
magnification, 7.5 µm scale) of (active) a-caspase-1 and NLRP3 expression in MDS 
versus normal BM-MNC. DAPI (blue), a-caspase-1 (green), NLRP3 (red); merged 
images show inflammasome formation. (C) Quantitative analysis of confocal images of 
BM-MNC isolated from MDS patients [lower-risk (n=7), higher-risk (n=3)] and normal 
donors (n=6). (D) Binding of ASC to NLRP3 in lower-risk MDS BM-MNC compared to 
normal donors (IP: NLRP3, IB: NLRP3, ASC). Data are representative of three 
independent experiments. (E) Immunoblot following chemical crosslinking of BM-MNC 
cell lysates derived from normal donors (n=3) and LR-MDS patients (n=3). (F) 
Quantitation of inflammasome activation based on ASC oligomerization in BM-MNC 
from lower-risk MDS (n=5) versus normal BM-MNC (n=3). (G) Mean percentage of ASC 
specks and speck MFI in the BM plasma of lower-risk MDS specimens (n=6) compared 
to normal BM plasma (n=3). (H) The mean percentage of pyroptotic cells by 
hematopoietic lineage in lower-risk MDS (n=8) versus normal donors (n=8). (I-J) Mean 
percentage of (I) total a-caspase-1

+
 and (J) a-caspase-3/7

+
 cells assessed by 

hematopoietic lineage in lower-risk MDS (n=8) and normal donors (n=5). (K) 
Comparison of the mean percentage of pyroptotic versus apoptotic cells by 
hematopoietic lineage in lower-risk MDS specimens (n=8). (L) Comparison of the mean 
percentage of a-caspase-1

+
 versus a-caspase-3/7

+
 cells in the same lower-risk MDS 

patients (n=8). (M) Mean percentage of pyroptotic cells following knockdown of NLRP3, 
CASP1 and CASP3 by shRNA-directed silencing of lower-risk MDS BM-MNC (NLRP3, 
n=4; CASP1 and CASP3, n=3). Error bars: SE, *p<0.05, **p<0.01 and ***p<0.001. 
 

NLRP3 inflammasome complexes in MDS specimens versus age-matched normal BM-

MNC, evidenced by co-localization and increased active (a)-caspase-1 (MFI 3.7-fold 

increase in lower-risk [p=7.1x10-3] versus 4.1-fold in higher-risk MDS [p=6.0x10-3]) and 

NLRP3 (MFI 69.1-fold increase in lower-risk [p=0.013] and 68.2-fold in higher-risk 

disease [p=5.1x10-3]) (Figure 15B and 15C). NLRP3 oligomerization and activation was 

confirmed by increased binding of NLRP3 to ASC in MDS compared to normal donors 

(Figure 15D), and by robust formation of ASC monomers and higher-order oligomer 

complexes, which are indispensable for inflammasome activity and evident following 

DSS-crosslinking (Figure 15E). MDS BM-MNC also displayed increased levels of pro- 

and a-caspase-1, pro-IL-1β and a-IL-1β compared to normal BM-MNC (n=3) (Figure 

15E). Finally, inflammasome formation was confirmed by alternate methods of 
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assessment of ASC oligomerization, where ASC incorporation into inflammasome 

complexes is detected by flow cytometric changes in fluorescence pulse height and 

area (Figure 15F).297 MDS specimens also displayed significantly greater 

inflammasome assembly compared to controls, irrespective of IPSS risk group (Figure 

15C). Specifically, NLRP3 inflammasome assembly was increased 2.9-fold in lower-risk 

(p=3.9x10-5) and 3.1-fold in higher-risk (p=7.1x10-5) MDS patients. Active ASC specks 

are released into the extracellular space following cytolysis and specifically following 

execution of pyroptotic pore formation and cytolysis.298 Notably, analysis of ASC specks 

in BM plasma from lower-risk MDS specimens (n=6) confirmed a profound increase in 

the percentage and MFI of ASC specks in MDS compared to normal BM plasma (n=3) 

(mean, MDS 36.2+1.4 vs. 6.0+8.4, Figure 15G). Finally, immunofluorescence and flow 

cytometry analyses of other hematologic malignancies suggest that inflammasome 

activation is specific for MDS (Figure 16). 

Caspase-1 activation by the inflammasome is followed by mitochondrial 

depolarization and caspase-3 activation, a secondary cleavage target of caspase-1, as 

late events in pyroptosis. To specifically assess pyroptosis versus apoptosis in MDS, 

the percentage of pyroptotic cells, defined as the percentage of a-caspase-1+/a-

caspase-3/7+/annexin-V+ cells, was determined in phenotypically distinct hematopoietic 

lineages by flow cytometry. Normal (n=5) and lower-risk MDS BM-MNC (n=8) were 

incubated with autologous BM plasma for 24 hours prior to flow cytometry analysis. 

MDS HSPC demonstrated profound increases in pyroptosis, where the fraction of 

pyroptotic cells was increased 4.1-fold in CD34+CD38- stem cells (p=0.035), 4.9-fold in 
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Figure 16. NLRP3 inflammasome assembly may be MDS-specific. (A) 
Representative confocal fluorescence micrograph (2520x magnification, 7.5 µm scale) 
of a-caspase-1 and NLRP3 expression in MDS (n=10), de novo AML (n=5), secondary 
AML (n=8), chronic lymphocytic leukemia (CLL, n=5), multiple myeloma (MM, n=5), 
chronic myeloid leukemia (CML, n=3), acute B lymphoblastic leukemia (B-ALL, n=3) 
and T cell lymphoma (TCL, n=3) BM-MNC. DAPI (blue), a-caspase-1 (green), NLRP3 
(red); merged images show inflammasome formation. (B-C) Quantitative analysis of (B) 
a-Caspase-1 MFI and (C) NLRP3 MFI. Error bars: SE, *p<0.05, **p<0.01 and 
***p<0.001.    
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progenitor cells (CD34+CD38+, p=6.8x10-3), 6.6-fold in immature myeloid cells (CD33+, 

p=1.5x10-3), and 7.3-fold in erythroid cells (CD71+, p=2.8x10-3) compared to normal 

controls (Figure 15H). Additionally, the percentage of a-caspase-1+ cells was increased 

14.2-fold in the stem cell fraction (p=8.0x10-3), 13.2-fold in progenitors, 12.9-fold in 

immature myeloid cells (p=1.3x10-4), and 13.0-fold in CD71+ erythroid precursors 

(p=7.7x10-3) (Figure 15I). A-caspase-1 MFI directly correlated with NLRP3 MFI, 

inflammasome assembly and the percentage of pyroptotic stem cells. Notably, the latter 

was directly associated with the percentage of a-caspase-1+ CD33+ myeloid progenitors 

(Figure 17).  In contrast, there were no significant differences in the apoptotic indices 

(i.e., a-caspase-3/7+/a-caspase-1-/annexin-V+) in lower-risk MDS specimens (n=8) 

versus normal progenitors in any of the four hematopoietic cell subsets investigated 

(Figure 15J). Indeed, the pyroptotic cell fraction was 14.4-fold (p=9.7x10-3), 9.7-fold 

(p=2.3x10-3), 21.9-fold (p=9.5x10-4), and 12.1-fold (p=1.6x10-3) increased in stem cells, 

progenitor cells, immature myeloid and erythroid cells when compared to the apoptotic 

cell fraction (Figure 15K). Finally, the fraction of a-caspase-1+ cells was significantly 

greater than the corresponding a-caspase-3/7+ cell fraction, confirming that caspase-1 

activation (pyroptosis) exceeds caspase-3 activation (apoptosis) in MDS (Figure 15L).  

To confirm that NLRP3 inflammasome activation and caspase-1 are essential for 

hematopoietic cell death in MDS, shRNA-directed knockdown of NLRP3, CASP1 and 

CASP3 was performed by lentivirus transfection of lower-risk BM-MNC (NLRP3, n=4; 

CASP1 and CASP3, n=3) (Figure 15M). Protein levels of NLRP3 were reduced 54%, 

whereas expression of CASP1 and CASP3 were reduced 34% and 40%, respectively. 

Knockdown of NLRP3 and caspase-1 significantly decreased the fraction of pyroptotic 
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Figure 17. Caspase-1 activation significantly correlates with the extent of 
pyroptosis detected in MDS BM-MNC. (A-B) A-caspase-1 MFI, NLRP3 MFI and 
NLRP3 inflammasome formation measured by co-localization of a-caspase-1/NLRP3, 
were determined by analysis of confocal immunofluorescence images. (C-D) The 
percentage of pyroptotic stem cells and MFI of a-caspase-1 in the stem cell and CD33

+
 

population were determined by flow cytometry.  
 

cells versus scrambled transfected controls (p=5.7x10-3 and 0.038, respectively) (Figure 

15M). In contrast, knockdown of caspase-3 had no discernible effect (Figure 15M), 

confirming selective NLRP3- and caspase-1-dependence. 
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The alarmin S100A9 initiates pyroptosis. As we previously reported,140 BM 

plasma concentration of S100A9 was significantly higher in lower-risk MDS patient 

specimens (n=33) compared to normal controls (n=12; p=1.5x10-4) (Figure 18A). 

Analysis of S100A9 BM plasma concentration by International Prognostic Scoring 

System (IPSS) risk category showed a 2.3- and 2.2-fold increase in low risk (n=10, 

p=2.3x10-5) and intermediate-I risk MDS (n=23, p=1.0x10-3), compared to normal 

controls (n=12), whereas there were no significant differences among controls and 

intermediate-II (n=17) or high risk (n=10) disease (Figure 18B). Notably, BM S100A9 

concentrations were significantly higher in lower-risk versus higher-risk MDS (p=0.013) 

(Figure 18A), consistent with the reduced fraction of MDSC and acquisition of survival 

signals in higher-risk MDS that mitigates cell death and DAMP elaboration.84,197 

In addition, the BM plasma concentration of HMGB1, a nuclear DAMP and TLR4 

ligand, was significantly increased in MDS (n=55) versus normal controls (n=11) 

(p=2.6x10-3) (Figure 18C), consistent with intracellular DAMP release upon 

cytolysis.113,299 Moreover, S100A9 and HMGB1 transcripts were up-regulated 104.5-fold 

and 1.5-fold in MDS, respectively, compared to normal controls (Figure 18D and 18E). 

Further, flow cytometry analyses of phenotypically distinct hematopoietic lineages 

confirmed a corresponding increase in the intracellular levels of S100A9 protein in MDS 

stem cells and progeny (Figure 18F and 18G).  

As TLRs and NLRs are sensors of DAMP signals, we tested if S100A9 would 

directly trigger pyroptosis in HSPC. Normal BM-MNCs were treated with 1 µg/mL 

rhS100A9 and changes in gene expression were assessed by qPCR. The expression of 

pyroptosis-associated genes was significantly induced by rhS100A9, and indeed 
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Figure 18. S100A9 initiates pyroptosis in MDS. (A) ELISA assessment of BM plasma 
concentration of S100A9 in normal donors (n=12) versus MDS [lower-risk (n=33), 
higher-risk (n=27)]. (B) S100A9 BM plasma concentration analyzed according to IPSS 
risk score. (C) HMGB1 BM plasma concentration assessed by ELISA in normal donors 
(n=11) and MDS (n=55). (D) qPCR analysis of S100A9 mRNA levels in normal (n=2) 
versus lower-risk MDS BM-MNC (n=8). (E) HMGB1 mRNA levels in normal (n=6) 
versus MDS BM-MNC (n=10). (F) Representative histograms of intracellular levels of 
S100A9 by hematopoietic lineage in BM-MNC isolated from MDS patients (n=6) and 
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from normal donors (n=5). (G) Mean percentage of S100A9
+
 cells by hematopoietic 

lineage. (H) qPCR analysis of untreated normal BM-MNC (n=3), normal BM-MNC 
treated with 1 µg/mL rhS100A9 for 24 hours (n=2) and MDS patient specimens (n=5). (I) 
Representative micrograph (2520x magnification, 7.5 µm scale) depicting 
inflammasome formation in normal, untreated BM-MNC or normal BM-MNC treated with 
5 µg/mL rhS100A9 for 24 hours. DAPI (blue) a-caspase-1 (green), and NLRP3 (red); 
merged images show inflammasome formation. (J) Quantitative analysis of confocal 
images of BM-MNC from normal donors (n=6), normal BM-MNC treated with 5 µg/mL 
rhS100A9 (n=2), and MDS patients (n=10). Error bars: SE, *p<0.05, **p<0.01 and 
***p<0.001. 
 

exceeded those found in MDS (Figure 18H). Accordingly, treatment of normal BM-MNC 

with 5 µg/mL rhS100A9 was sufficient to induce a-caspase-1 and NLRP3 (Figure 18I) 

by 2.5-fold and 47.1-fold (p=0.064), respectively, as well as NLRP3 inflammasome 

assembly (2.9-fold, p=3.1x10-4) (Figure 18J). Although rhS100A9 induced 

inflammasome assembly and caspase-1 activation in normal BM-MNC, MDS patient 

BM-MNC displayed greater activation of these effectors. Notably, treatment of normal 

BM-MNC with MDS-derived bone marrow plasma did not induce pyroptosis, as 

measured by the mean percentage of pyroptotic cells, a-caspase-1+ cells or a-caspase-

1 MFI (data not shown), indicating that MDS HSPCs are selectively primed for the 

pyroptotic response.  

Inflammasome-activated cation channels increase the size of MDS 

progenitors. Cell swelling is a hallmark of pyroptosis following activation of plasma 

membrane cation channels, which compromise membrane integrity and trigger 

mitochondrial membrane depolarization.214 Confocal image analyses of MDS BM-MNC 

cells revealed a significantly larger mean cell area compared to normal BM-MNC 

(Figure 19A). Further, this phenotype was accentuated in lower-risk MDS patients 
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Figure 19. MDS precursors evidence cell swelling, a pyroptotic hallmark. (A) Mean 
cell area was quantified from confocal images of BM-MNC from normal donors (n=6) 
versus MDS patient specimens [lower-risk (n=7), higher-risk (n=3)]. (B) Flow cytometric 
analysis of mean SSC-A intensity of BM-MNC isolated from normal donors (n=6) or 
lower-risk MDS patients (n=7). MDS BM-MNC have 2.0-fold greater mean cell area of 
live, ungated BM-MNC (p=0.017), 2.2-fold of stem cells (CD34

+
CD38

-
, p=0.019), 1.5-

fold of progenitor cells (CD34
+
CD38

+
), 1.6-fold of immature myeloid progenitors (CD33

+
) 

and 2.0-fold of erythroid progenitors (CD71+, p=0.038). (C) NLRP3 MFI correlates with 
BM-MNC area in lower-risk MDS patients (r=0.49, n=7). (D) Ethidium bromide dye 
incorporation in BM-MNC from normal donors (n=3) and MDS patients (n=3) was 
measured at 5 minute intervals by flow cytometry. (E) Left to right, photomicrograph 
images from normal donors illustrating normal red blood cell (RBC, 7.0 µm) followed by 
normal erythroid lineage maturation of nucleated BM precursors with corresponding cell 
diameter. (F) Corresponding images from MDS BM aspirates, demonstrating an oval 
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macrocyte (RBC, 9.1 µm) followed by dysplastic and megaloblastic erythroid lineage 
maturation. (G) Normal myelocyte. (H) Enlarged dysplastic myelocyte with mild 
hypogranulation in MDS. (I-J) (I) Erythroid and (J) myeloid lineage maturation 
comparison of mean cell diameter in normal donor (n=4) versus MDS patient (n=4) BM. 
Maturation is depicted as most to least mature cell populations from left to right. Error 
bars: SE, *p<0.05, **p<0.01 and ***p<0.001. 
 

 versus normal controls (p=6.0x10-5), whereas there were no significant differences in 

higher-risk patients. These findings were corroborated using SSC-A flow cytometric 

measurements, a validated reference for cell size,300 in ungated BM-MNC derived from 

lower-risk MDS patients (n=7) and normal donors (n=6), as well as in antigenically 

distinct hematopoietic cell subsets (Figure 19B). Finally, mean NLRP3 MFI correlated 

with mean cell area in lower-risk but not higher-risk MDS patients (r=0.49) (p=7.8x10-3) 

(Figure 19C).  

To assess ion channel activation, influx of the membrane-impermeable, cationic 

dye ethidium bromide (EtBr) was assessed by flow cytometry. MDS specimens 

incubated with autologous bone marrow plasma displayed rapid and sustained EtBr 

influx compared to that of normal BM-MNC (Figure 19D). This was detected as early as 

20 minutes in MDS specimens (p=0.041), and was sustained through 1 hour of dye 

exposure (p=0.014). Finally, analysis of normal and MDS BM morphology confirmed the 

larger cell size by maturation stage and lineage in MDS (Figure 19E-J).  

Inhibition of pyroptosis promotes effective hematopoiesis in MDS. To 

assess the role of S100A9 in pyroptosis in MDS, we tested if S100A9 neutralization in 

autologous BM plasma using a high-affinity chimeric (CD33-IgG1) decoy receptor could 

ameliorate the phenotypes manifest in MDS BM-MNC. Notably, treatment with the 

CD33-IgG1 chimera markedly reduced the fraction of pyroptotic cells without altering the 



www.manaraa.com

 
 

93 

fraction of apoptotic cells (Figure 20A and 20B). Overall, short-term incubation with the 

chimera was sufficient to reduce the fraction of pyroptotic cells across lineages, with an 

81% reduction in stem cells, 57% in progenitor cells, 90% in CD33+ and 42% in CD71+ 

erythroid progenitors. Short-term treatment with CD33-IgG1 also significantly reduced 

the MDSC fraction, confirming that blocking S100A9 function impairs survival of MDSC 

(data not shown). Consistent with this, the CD33-IgG1 chimera reduced S100A9 

transcriptional priming, evidenced by a concentration-dependent reduction in the 

expression of CASP1, IL-1β, IL-18, and NLRP3 transcripts in MDS BM-MNC versus 

treatment with autologous BM plasma alone (n=5) (Figure 20C). CASP3 expression was 

also markedly reduced, consistent with late, secondary caspase-3 activation.278 Note 

that as a result of the IgG1-Fc conjugation, high concentrations of the chimera led to 

cross-linking of the Fc domains and aggregation that masked dose-dependent 

transcriptional effects of S100A9 neutralization. 

To test if S100A9 neutralization could improve hematopoiesis in MDS, colony 

forming capacity was assessed after plating MDS BM-MNC in autologous BM plasma 

and increasing concentrations of CD33-IgG1 (Figure 20D) or of MCC950 (Figure 20E), a 

small molecule inhibitor of the NLRP3 inflammasome.301 Notably, neutralization of 

S100A9 or inhibition of the NLRP3 inflammasome markedly improved colony forming 

capacity of MDS progenitors (up to 6.6-fold greater than controls). Thus, pyroptotic 

pathway inhibition abrogates MDS hematopoietic cell death and promotes effective 

hematopoiesis.   

S100A9 is sufficient to provoke HSPC pyroptosis in vivo. To test if forced 

expression of S100A9 is sufficient to induce pyroptosis in vivo, we assessed 
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Figure 20. Inhibition of pyroptosis abrogates MDS HSPC death and augments 
colony forming capacity. (A-B) Fold change in the mean percentage of (A) pyroptotic 
or (B) apoptotic cells in each respective lineage in lower-risk MDS BM-MNC (n=6) 
incubated with autologous BM plasma and 0.5 µg CD33-IgG1 chimera for 24 hours. 
Values are normalized to autologous BM plasma-incubated MDS BM-MNC. (C) qPCR 
analysis of BM-MNC isolated from lower-risk MDS patients (n=5) treated for 24 hours 
with CD33-IgG1. (D) Colony forming capacity was assessed in BM-MNC from lower-risk 
MDS patient specimens (n=3) treated with increasing concentrations of CD33-IgG1 or 
(E) the inflammasome inhibitor MCC950. Error bars: SE, *p<0.05. 
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phenotypes manifest in an S100A9 transgenic (S100A9Tg) mouse model that 

phenocopies human MDS.140 Confocal fluorescence microscopy analyses of BM cells 

from the tibia and femurs of S100A9Tg versus wild type (WT) mice at 2 (n=4), 6 (n=4), 

and 11 (n=5) months of age showed that caspase-1 activation increased with age in the 

BM cells of S100A9 transgenics, with a 2.1-fold up-regulation at 2 months, 2.4-fold at 6 

months (p=3.3x10-3), and 2.5-fold at 11 months (p=0.010). Similarly, NLRP3 levels were 

increased in S100A9Tg mice, with a 21.1-fold up-regulation at 2 months (p=0.059), 

25.6-fold at 6 months (p=2.2x10-4), and 12.1-fold at 11 months (p=0.018) (Figure 21A). 

Accordingly, formation of NLRP3 inflammasome complexes also significantly increased 

with age, with 2.6-fold greater co-localization in the 2-month-old S100A9Tg transgenic 

mice (p=0.017), 3.3-fold in 6 month (p=1.0x10-6), and 3.2-fold in 11-month-old mice 

(p=1.2x10-3) (Figure 21A). 

To determine if S100A9 was sufficient to trigger pyroptosis in mouse 

hematopoietic cells, BM cells isolated from WT mice were treated with 5 µg/mL 

recombinant murine S100A9 and inflammasome formation was assessed by confocal 

microscopy (Figure 21B and 21C). As predicted, MFI of a-caspase-1 and NLRP3 

significantly increased after rmS100A9 treatment (n=2) versus controls (n=2) (p=7.5x10-

3 and 0.017, respectively). Notably, MFI values from rmS100A9-treated WT BM cells 

were comparable to those manifest in the BM cells of S100A9 transgenic mice (n=13), 

and rmS100A9 treatment of WT BM cells markedly induced assembly of inflammasome 

complexes (p=0.023) (Figure 21C).  

To assess the extent of pyroptosis versus apoptosis in vivo, BM cells were 

isolated from 7-month-old WT (n=6) and 9-month-old S100A9Tg (n=6) mice and active 
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Figure 21. Pyroptosis is the principal mechanism of HSPC death in S100A9 
transgenic mice. (A) Confocal image analysis of BM cells isolated from WT (n=2), 2 
month (n=4), 6 month (n=5) and 11 month (n=4) old S100A9Tg mice. (B) 
Representative micrograph (2520x magnification, 7.5 µm scale) depicting 
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inflammasome formation in BM cells from WT, WT cells treated for 24 hours with 5 
µg/mL S100A9 and BM cells from S100A9Tg mice. DAPI (blue), a-caspase-1 (green) 
and NLRP3 (red); merged images show inflammasome formation. (C) Quantitative 
analysis of confocal images of BM cells isolated from WT (n=2) mice, from WT BM cells 
treated for 24 hours with 5 µg/mL rmS100A9 (n=2) or BM cells from S100A9Tg mice 
(n=13). (D) Representative scatter plots of pyroptotic and apoptotic LSK (Lin

-
Sca-1

+
c-

Kit
+
) cells isolated from WT and transgenic mice. (E) Mean percentage of pyroptotic 

versus apoptotic LSK cells in WT (n=6) and S100A9Tg mice (n=6). (F) Mean 
percentage of total a-caspase-1

+
 and a-caspase-3/7

+
 LSK cells isolated from WT (n=6) 

and S100A9Tg mice (n=6). (G) Flow cytometric analysis of mean SSC-A intensity of BM 
cells isolated from WT (n=6) and S100A9Tg mice (n=6) (p=1.0x10

-2
). (H) At six months 

of age, S100A9Tg mice were treated with 50 mg/kg of ICTA. Shown are changes in 
hemoglobin, white blood cell (WBC), RBC and platelet counts in WT (n=4), S100A9Tg 
(n=5) and ICTA-treated S100A9Tg mice (n=5). (I) Mean percentage of LSK+ HSPC in 
untreated versus ICTA-treated S100A9Tg mice. (J) Representative micrograph (2520x 
magnification, 7.5 µm scale) depicting inflammasome formation in BM cells harvested 
from untreated S100A9Tg mice or mice treated with ICTA by oral gavage for a total of 
eight weeks. DAPI (blue), a-caspase-1 (green), and NLRP3 (red); merged images show 
inflammasome formation. Error bars: SE, *p<0.05, **p<0.01 and ***p<0.001. 
 

caspase-1 and a-caspases-3/7 were assessed by flow cytometry in the LSK (Lin-Sca-1+ 

c-Kit+) HSPC population. The mean percentage of pyroptotic LSK cells was significantly 

increased in the S100A9Tg versus WT mice (p=0.052), whereas WT BM cells had a 

higher apoptotic index (p=7.1x10-3) (Figure 21D and 21E). Additionally, the percentage 

of a-caspase-1+ LSK cells was increased 2.6-fold in the S100A9Tg mice compared to 

WT mice (p=4.2x10-3), while there was no significant difference in the a-caspase-3/7+ 

LSK cells in the two cohorts (Figure 21F). S100A9Tg BM cells also had a significant 

increase in mean cell area, as assessed by SSC-A intensity measurements (Figure 

21G). Finally, to test if in vivo inflammasome inhibition also improves hematopoiesis in 

S100A9Tg mice, aged S100A9Tg mice (n=5) were treated with ICTA, an icariin 

derivative that inhibits NLRP3 inflammasome activation, every other day for eight weeks 

(Figure 22). ICTA treatment markedly improved peripheral blood counts, and increased 
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Figure 22. ICTA inhibits inflammasome activation. (A) Representative micrograph 
(1890x magnification, 10 µm scale) depicting inflammasome formation in U937 cells 
following 24 hr treatment with vehicle or 5 µg/mL rhS100A9 alone or with ICTA (20 
µg/mL). DAPI (blue), a-caspase-1 (green), NLRP3 (red); merged image shows 
formation of inflammasome complexes. (B) Quantitative analysis of confocal images. 
Error bars: SE, *p<0.05, **p<0.01 and ***p<0.001.  
 

hemoglobin, leukocyte count, red blood cells and platelet counts in the transgenic mice 

(Figure 21H), accompanied by a significant increase in the percentage of LSK+ HSPC 

(p=0.047) (Figure 21I), consistent with restored effective hematopoiesis. Finally, NLRP3 
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activation was dramatically reduced in BM cells from ICTA-treated S100A9Tg mice 

(Figure 21J). Thus, pyroptosis is the principal mechanism driving HSPC cell death in 

MDS and S100A9Tg mice. 

S100A9 and MDS somatic gene mutations trigger pyroptosis and β-catenin 

activation via ROS. ROS act as DAMP intermediates that activate the Wnt/β-catenin 

axis, which is known to be activated in MDS.302-306 Thus, we hypothesized that ROS 

generated by either S100A9 or somatic gene mutations would direct activation of β-

catenin in MDS. In accord with this notion, the mean percentage of ROS positive cells 

was increased in MDS BM-MNC (n=5) 16.5-fold compared to normal BM-MNC (n=2) 

(p=0.011) (Figure 23A), with corresponding significant increases in ROS MFI (p=0.028) 

(Figure 23B). Further, MDS BM-MNC displayed increased nuclear β-catenin (n=6) 

compared to normal donors (n=3), as well as in normal BM-MNC treated with 5 µg/mL 

rhS100A9 versus untreated BM-MNC (p=0.043 and p=6.38x10-7, respectively) (Figure 

23C and 23D). Finally, β-catenin mRNA levels were increased 9.5-fold in the BM cells of 

S100A9Tg mice versus WT BM cells, with corresponding up-regulation of Wnt/β-catenin 

target genes (Figure 23E). As expected, this phenotype was associated with significant 

increases in nuclear β-catenin in S100A9Tg-derived BM cells versus WT BM cells, and 

levels of nuclear β-catenin were reduced following in vivo treatment with ICTA (Figure 

23F), which led to corresponding reductions in the expression of Wnt/β-catenin target 

genes (Figure 23E). Similarly, treatment of MDS BM-MNC with ICTA suppressed 

nuclear β-catenin as well as Wnt/β-catenin target gene expression (Figure 23G). Thus, 

the S100A9-to-NLRP3 inflammasome circuit is necessary and sufficient to drive 

activation of β-catenin in MDS. 
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Figure 23. S100A9 induces ROS through NADPH oxidase to activate β-catenin. (A-
B) The percentage of (A) ROS positive cells and (B) ROS MFI assessed by flow 
cytometry in BM-MNC isolated from MDS patients (n=5) and normal donors (n=2). (C) 
Representative micrograph (2520x magnification, 7.5 µm scale) of β-catenin expression 
in normal BM-MNC (n=3), normal BM-MNC treated with 5 µg/mL rhS100A9 (n=3) and 
MDS BM-MNC (n=6). DAPI (blue), β-catenin (red); merged images show nuclear β-
catenin localization. (D) Quantitation and scoring of confocal images based on the 
presence of no, low, medium or high nuclear β-catenin. (E) Wnt/β-catenin target gene 
expression in WT and S100A9Tg BM cells. (F) Representative micrograph (2520x 
magnification, 7.5 µm scale) of β-catenin expression in WT (n=5), S100A9Tg (n=5) and 
S100A9Tg that were treated with ICTA (n=5) by oral gavage for a total of eight weeks. 
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DAPI (blue), β-catenin (red); merged images show nuclear β-catenin localization. (G) 
Wnt/β-catenin target gene expression in MDS BM-MNC (n=4) treated for 48 hours with 
ICTA. Error bars: SE, *p<0.05 and ***p<0.001.  
 

To determine if somatic gene mutations in MDS also trigger activation of the 

NLRP3 inflammasome, increased ROS, pyroptosis and β-catenin activation, we first 

investigated these phenotypes in TF-1 myeloid leukemia cells engineered to express 

GFP-labeled wild type or mutants of the U2AF1 splicing factor gene.290 The percentage 

of pyroptotic cells was increased 4.6-fold in U2AF1-S34F mutant versus U2AF1-WT-

expressing cells, which was associated with increased levels of a-caspase-1 (p=0.044) 

and annexin-V (p=0.021) (Figure 24A-24H). Further, there was increased ASC 

oligomerization and NLRP3 inflammasome activation in the S34F-expressing cells, as 

evidenced by increased binding of NLRP3:ASC (Figure 24I), maturation of caspase-1 

and IL-1β (Figure 24J) and the generation of ASC monomers and higher-order ASC 

complexes (Figure 24K). 

ROS generation by NADPH oxidase-1 (NOX1) has been linked to Wnt/β-catenin 

activation.302,303 Treatment of the S34F-expressing cells with the NOX1/4-specific 

inhibitor GKT137831 or with the pan-NOX inhibitor DPI profoundly reduced ASC 

oligomerization and thereby NLRP3 inflammasome assembly; thus, NLRP3 activation in 

response to somatic gene mutation is NOX1/4-dependent (Figure 24B). Moreover, 

elevated levels of ROS in U2AF1-S34F-expressing cells were abrogated by 

GKT137831 or DPI treatment (Figure 24N and 24O). U2AF1-S34F-expressing cells also 

displayed significant increases in mean cell area (p=0.035), ethidium bromide influx 

(Figure 24L and 24M), mean percentage of ROS+ cells (p=1.5x10-3) and ROS MFI 

(p=0.032) (Figure 24N and 24O), accompanied by nuclear localization of β-catenin 
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Figure 24. U2AF1 mutations manifest in MDS provoke pyroptosis and induce 
NOX-dependent activation of β-catenin. (A) Representative density plot of 
inflammasome formation based on ASC oligomerization. (B) Quantitation of ASC in WT, 
S34F and S34F cells treated with DPI for 24 hours. (C) Representative scatter plots of 
pyroptotic cells by flow cytometry. (D) Mean percentage of pyroptotic cells in mutant and 
WT cells. (E-H) Mean percentage of total (E) a-caspase-1

+
 and (F) annexin-V

+
 cells, as 

well as the MFI of (G) a-caspase-1 and (H) annexin-V assessed by flow cytometry. (I) 
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Binding of ASC to NLRP3 (IP: NLRP3, IB: NLRP3, ASC). (J) Western blot of cleaved 
caspase-1 and IL-1β maturation. (K) Immunoblot of ASC monomers and higher-order 
ASC complexes following chemical crosslinking of cell lysates. (L) Mean cell area 
quantitated from confocal images. (M) Incorporation of ethidium bromide measured by 
flow cytometry at 5 minute intervals. (N-O) Mean percentage of (N) ROS positive cells 
and (O) ROS MFI assessed by flow cytometry. (P) Representative micrograph (1890x 
magnification, 10 µm scale) of β-catenin expression in U2AF1 WT cells, S34F or S34F-
expressing cells treated with NAC or DPI for 24 hours prior to staining. DAPI (blue), β-
catenin (red); merged images show nuclear β-catenin localization. (Q) Quantitation and 
scoring of confocal images based on the presence of no, low, medium or high nuclear β-
catenin. (R) Representative density plot of inflammasome formation based on ASC 
oligomerization in S34F cells treated with 10 µM ICTA. (S) Colony forming capacity 
assessed in WT, S34F and S34F cells treated with increasing concentrations of ICTA 
(0.01-10 µM). The mean number of colonies is representative of four replicates per 
condition. Error bars: SE, *p<0.05, **p<0.01, and ***p<0.001. Data are representative of 
three independent experiments. 
 

(Figure 24P and 24Q). Notably, treatment of U2AF1-S34F mutant cells with the anti-

oxidant N-acetylcysteine (NAC) or the NOX inhibitor DPI effectively reduced β-catenin 

activation in U2AF1-S34F-expressing cells (p=3.8x10-3 and p=2.5x10-6, respectively) 

(Figure 24P and 24Q); thus, β-catenin activation is initiated by NOX-derived ROS 

generation. Finally, treatment of the U2AF1-S34F-expressing mutant cells with the 

NLRP3 inflammasome inhibitor ICTA suppressed inflammasome activation, as 

evidenced by a reduction in ASC polymerization, and restoration of colony forming 

capacity to levels commensurate with that of WT BM cells (Figure 24R and 24S). Thus, 

the reduced survival of cells harboring this MDS splicing mutation is driven by NLRP3 

inflammasome-directed pyroptosis, while β-catenin activation may support propagation 

of the clone.  

This circuitry was also evaluated in BM cells from the conditional knock-in Sf3b1-

K700E mouse model, which expresses an RNA splicing subunit gene mutation found in 

MDS and displays an MDS phenotype.307 Sf3b1-K700E BM cells (n=6) displayed similar 
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increases in the percentage of pyroptotic versus apoptotic cells, with a significant 

increase in total a-caspase-1+ cells (p=0.014) versus WT BM (n=6) (Figure 25A and 

25B). Further, a-caspase-1 and a-caspase-3/7 MFI were both significantly increased in 

the Sf3b1-K700E mutant BM cells (p=0.030 and p=6.92x10-3, respectively) (Figure 25C) 

accompanied by increased inflammasome assembly (Figure 25D). Accordingly, NLRP3 

protein expression was increased 1.9-fold in the Sf3b1-K700E cells (p=0.063) in 

accordance with NLRP3 inflammasome formation (Figure 25E).  

Inflammasome activation in Sf3b1-K700E mutant BM cells was confirmed by 

assessment of ASC oligomerization, demonstrating marked ASC polymerization 

associated with inflammasome assembly versus WT BM (p=8.4x10-3). Further, this was 

dependent upon NOX-generated ROS, as (i) ASC oligomerization was significantly 

reduced in Sf3b1-K700E mutant-expressing BM cells following treatment with NAC 

(p=2.68x10-3) or DPI (Figure 25F-G); and (ii) the mean percentage of ROS+ cells and 

ROS MFI were markedly increased in Sf3b1-K700E-expressing mutant BM cells, which 

was extinguished by treatment with NAC or DPI (Figure 25H-I). Finally, nuclear 

localization of β-catenin was also significantly increased in Sf3b1-K700E mutant BM 

compared to WT BM (p=0.04), which was also reduced by treatment with NAC 

(p=2.0x10-3) or DPI (p=1.8x10-2) (Figure 25J-K).  

Notably, pharmacologic inhibition of the NLRP3 inflammasome in Sf3b1-K700E 

mutant BM cells restored colony forming capacity, illustrating the importance of 

inflammasome activation in the attrition of mutant cells (Figure 25L). Similar findings 

were also manifest in mutant versus WT SRSF2-expressing HEK293T cells (Figure 26), 

as well as in BM cells obtained from MDS murine models driven by epigenetic 
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Figure 25. Sf3b1-K700E induces pyroptosis and supports self-renewal through β-
catenin activation. Data are representative of BM cells harvested from wild type (WT) 
(n=6) and Sf3b1-K700E mutant (n=6) mice. (A) Quantitation of the percentage of 
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pyroptotic versus apoptotic cells. (B) Mean percentage of total a-caspase-1
+
, a-

caspase-3/7
+
, and annexin-V

+
 cells.  (C) MFI values for a-caspase-1, a-caspase-3/7, 

and annexin-V+ cells. (D) Representative micrograph (2520x magnification, 7.5 µm 
scale) depicting inflammasome formation in the WT and K700E mutant cells. DAPI 
(blue), a-caspase-1 (green), NLRP3 (red); merged image shows inflammasome 
formation. (E) Quantitative analysis of a-caspase-1/NLRP3 confocal images. (F) 
Representative density plot of inflammasome formation based on the detection of 
fluorescence pulse differences in ASC. (G) Quantitation of ASC in WT, K700E and 
K700E cells treated with NAC or DPI for 24 hr. (H-I) Mean percentage of (H) ROS 
positive cells and (I) ROS MFI assessed by flow cytometry. (J) Representative 
micrograph (2520x magnification, 7.5 µm scale) of β-catenin expression. DAPI (blue), β-
catenin (red), and the merged images show nuclear localization of β-catenin. (K) 
Quantitation and scoring of β-catenin confocal images based on the presence of no, 
low, medium, or high nuclear β-catenin in WT, K700E and K700E cells treated with NAC 
or DPI for 24 hr. (L) Colony forming capacity was assessed in WT, K700E or K700E 
cells treated with increasing concentrations of ICTA (0.1-10 µM). Mean number of BFU-
E colonies is representative of BM cells isolated from four mice per condition, and four 
replicates per mouse. Error bars: SE, *p<0.05, **p<0.01 and ***p<0.001. 
 

regulatory gene mutations (Asxl1, Tet2)308,309 (Figure 27). To confirm that somatic gene 

mutations prime HSPC for pyroptosis in MDS, we performed comparative analyses of 

published gene expression profiles from human and murine SRSF2 (GSE65349) and 

U2AF1 mutants (GSE30195, GSE66793) versus WT, TET2 knock-out (GSE27816) and 

primary MDS (GSE19429) versus normal HSPC, demonstrating uniform up-regulation 

of pyroptosis effectors consistent with transcriptional priming.309-313 

Importantly, in MDS BM specimens, BM plasma concentration of S100A9 

positively correlated with NLRP3 MFI, percentage and MFI of plasma ASC specks, and 

with the presence of spliceosome gene mutations and variant allele frequency (VAF) 

(Figure 28). Furthermore, both the percentage and MFI of plasma ASC specks were 

significantly increased in MDS patients harboring somatic gene mutations (Figure 28D-

E). Finally, the percentage of pyroptotic erythroid precursors significantly increased in 
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Figure 26. SRSF2 mutants induce pyroptosis and support self-renewal through β-
catenin.  HEK293T cells were transiently transfected with wild type (WT) and P95H 
mutant SRSF2 expression plasmids. Data shown of the GFP

+
 transfected populations 
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are representative of three independent experiments. (A) Representative density plot of 
inflammasome formation based on the detection of fluorescence pulse differences in 
ASC. (B) Quantitation of ASC positive cells. (C-G) Fold change of the mean percentage 
of (C) pyroptotic cells, (D) total a-caspase-1

+
 cells, (E) total annexin-V

+
 cells, and MFI 

values for (F) a-caspase-1 and (G) annexin-V, normalized to WT transfected cells. (H-I) 
Mean percentage of (H) ROS positive cells and (I) ROS MFI. (J) Representative 
micrograph (1890x magnification, 10 µm scale) of β-catenin expression. DAPI (blue), β-
catenin (red), and the merged images show nuclear localization of β-catenin. (K) 
Quantitation and scoring of β-catenin confocal images based on the presence of no, 
low, medium, or high nuclear β-catenin. Error bars: SE, *p<0.05.   
 

parallel with splicing gene mutation VAF and with the number of somatic gene 

mutations. Thus, MDS somatic gene mutations prime cells to undergo pyroptosis, which 

promotes self-renewal and contributes to an inflammatory microenvironment that is 

driven by NOX-derived ROS. 

MDS HSPC are primed for NLRP3 inflammasome activation. Given the 

increased oxidative stress in MDS, we investigated the contribution of redox-proteins in 

mediating NLRP3 inflammasome activation. ROS oxidize thioredoxin (TRX) triggering 

its dissociation from thioredoxin-interacting protein (TXNIP). Recent studies suggest 

that liberated TXNIP serves as a redox sensitive ligand that binds NLRP3 and activates 

inflammasome complex assembly.261 TXNIP gene expression was 9.6-fold increased in 

lower-risk MDS BM-MNC (n=9) compared to normal donors (n=4), and increased 3.4-

fold in U2AF-S34F-expressing cells compared to WT U2AF1-expressing cells (Figure 

29A). Further, there was increased binding of TXNIP to NLRP3 in MDS and S34F-

expressing cells, compared to normal donors and WT cells, respectively (Figure 29B 

and 29C). Notably, increased NLRP3 oligomerization and activation was confirmed 

through binding of NLRP3:ASC (Figure 29B and 29C). Moreover, mRNA and protein 

levels of the pyrin domain-only protein (POP)-1, a key negative regulator of NLRP3 
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Figure 27. Asxl1 and Tet2 deletions are sufficient to induce pyroptosis and drive 
self-renewal through β-catenin activation.  BM cells were isolated from Asxl1 KO, 
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Tet2 KO and DKO mice and were compared to BM from wild type mice. (A) 
Representative micrograph (2520x magnification, 7.5 µm scale) depicting 
inflammasome formation in control and KO cells that were untreated, or treated with 
NAC or DPI for 24 hr. DAPI (blue), a-caspase-1 (green), NLRP3 (red); merged images 
show inflammasome formation. (B-D) Quantitative analysis of a-caspase-1/NLRP3 
confocal images. Cells were pooled for analysis. (E) Representative density plot of 
inflammasome formation based on the detection of fluorescence pulse differences in 
ASC. (F) Quantitation of percentage of ASC positive cells. (G) Quantitation of mean cell 
area. (H) Ethidium bromide dye incorporation was measured by flow cytometry at 5 min 
intervals. (I) Percentage of ROS positive cells was assessed by flow cytometry. (J) 
Representative micrograph (2520x magnification, 7.5 µm scale) of β-catenin 
expression. DAPI (blue), β-catenin (red), and the merged images show nuclear 
localization of β-catenin. (K) Quantitation and scoring of β-catenin confocal images 
based on the presence of no, low, medium, or high nuclear β-catenin. Cells were pooled 
for analysis. Measurements of significance were made on untreated KO cells compared 
to NAC or DPI treated KO cells. Error bars: SE, *p<0.05, **p<0.01 and ***p<0.001. 

 

inflammasome activation that functions as a dominant-negative ASC antagonist 

blocking ASC oligomerization,277 was profoundly reduced in both lower-risk MDS BM-

MNC (n=9) and U2AF1-S34F-expressing cells (Figure 29D and 29E). To determine if 

NLRP3 inflammasome activation is reinforced in MDS by reduced expression of POP-1, 

U2AF1-S34F cells were transfected with POP-1 expression vectors. Significant 

increases in POP-1 expression were associated with a 40% reduction in NLRP3 

activation, as measured by ASC oligomerization (Figure 29F). Collectively, these 

findings indicate that MDS HSPCs are primed for NLRP3 inflammasome activation. 

MDS MSC and stromal-derived lineages undergo pyroptosis. It is well 

established that a dynamic and complex interplay exists between hematopoietic cells 

and the surrounding mesenchymal stromal cells (MSC) in the MDS bone marrow.120-122 

Specifically, dysfunction in one compartment, namely hematopoietic cells or MSC, 

reinforces dysfunction in the other compartment.120 Of note, co-culture of MDS-derived 
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Figure 28. Somatic gene mutations and mutation variant allele fraction correlate 
with the extent of pyroptosis in MDS. (A) The percentage of pyroptotic CD71

+
 cells 



www.manaraa.com

 
 

112 

significantly increases with spliceosome mutation VAF. (B) There is a trend toward 
increased a-caspase-1

+
 CD71

+
 cells with VAF. (C) The percentage of pyroptotic CD71

+
 

cells increases with the number of mutations.  (D-E) The (D) percentage and (E) MFI of 
plasma ASC specks significantly increases with the presence of a somatic gene 
mutation. (F-G) The (F) percentage and (G) MFI of plasma ASC specks significantly and 
positively correlate with BM plasma S100A9 concentration.  

 

stromal cells with the F-36P AML cell line resulted in increased hematopoietic cell 

death, measured by 7-aminoactinomycin D (7-AAD) staining.121 Given the inflammatory 

nature of pyroptosis, with the release of DAMP signals, pro-inflammatory cytokines, and 

cellular debris following lysis, we hypothesized that pyroptotic cell death of HSPC 

triggers pyroptosis within MSC and stromal-derived lineages. As such, pyroptosis of 

stromal cells could account for the defective ability of the MDS stroma to support 

normal, effective hematopoiesis. 

Foremost, we measured the extent of pyroptosis versus apoptosis in MSC and 

MSC-derived lineages from lower-risk MDS (n=6) compared to normal (n=6) BM 

donors. MSC were defined as CD45-CD105+, endothelial cells as CD31+ and 

osteoblasts as CD34-osteocalcin(OCN)+. The mean percentage of pyroptotic MSC 

(p=4.1x10-3), endothelial cells (p=0.034) and osteoblasts (p=1.0x10-3) were significantly 

increased in MDS compared to normal donors (Figure 30A). While the apoptotic fraction 

across the three lineages was markedly increased in MDS compared to normal, these 

findings are consistent with activation of caspase-3 downstream of caspase-1 activation 

during pyroptosis execution (Figure 30B). Moreover, MDS specimens displayed 13.9-

fold and 7.6-fold increases in the mean percentage of a-caspase-1+ MSC (p=6.6x10-5) 

and endothelial cells (p=0.05) compared to normal donors (Figure 30C). Though a-

caspase-1+ osteoblast cells were increased 7.1-fold in MDS, this level only approached 
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Figure 29. Inflammasome activation occurs via up-regulation of TXNIP and down-
regulation of POP-1. Data are representative of three independent experiments. (A) 
qPCR analyses show  markedly increased expression of TXNIP in lower-risk MDS BM-
MNC (n=9) compared to normal donor controls (n=4), as well as in U2AF1-S34F-
expressing cells compared to WT. (B-C) Binding of TXNIP and ASC to NLRP3 is 
increased in (B) lower-risk MDS BM-MNC and (C) U2AF1-S34F cells (IP: NLRP3, IB: 
NLRP3, ASC, TXNIP). (D) POP-1 gene expression is dramatically reduced in lower-risk 
MDS BM-MNC (n=9) compared to normal donor controls (n=4), as well as in U2AF1-
S34F-expressing cells compared to WT. (E) Western blot of POP-1 and TXNIP protein 
expression in lower-risk MDS BM-MNC compared to normal donors. (F) U2AF1-S34F-
expressing cells were transiently transfected with POP-1 expression vectors by 
electroporation method. POP-1 expression is increased following transfection, which 
corresponds with a pronounced reduction in ASC oligomerization as measured by flow 
cytometry. Error bars: SE, *p<0.05.    

 

statistical significance (Figure 30C). To a lesser extent, a-caspase-3/7+ cells were 

increased across each stromal-derived lineage in MDS compared to normal (Figure 

30D). Similar observations were made with respect to a-caspase-1 MFI (Figure 30E) 

and a-caspase-3/7 MFI (Figure 30F). When the extent of pyroptosis versus apoptosis 
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was compared across lineages in MDS, the pyroptotic cell fraction significantly 

exceeded the corresponding apoptotic cell fraction (Figure 30G). Specifically, pyroptotic 

MSC, endothelial cells and osteoblasts were 7.3-fold (p=4.6x10-3), 10.3-fold (p=0.03) 

and 16.2-fold (p=1.1x10-4) more frequent than apoptotic cells of the same cell type 

(Figure 30G). When a similar comparison was made in the fraction of a-caspase-1+ 

versus a-caspase-3/7+ cells of each lineage, a-caspase-1+ cells were predominant 

(Figure 30H). Lastly, cell swelling, a hallmark of pyroptosis, can be measured by SSC-A 

flow cytometric measurements.300 MDS-MSC had significantly larger cell area (p=0.03) 

compared to normal donors (Figure 30I). While MDS endothelial cells and osteoblasts 

did display a larger cell area compared to normal, these data did not reach statistical 

significance. Together, these findings indicate that MDS-MSC and MSC-derived 

lineages, specifically endothelial cells and osteoblasts, predominantly undergo 

pyroptotic cell death. 

 

Discussion 

 

Heretofore, ineffective hematopoiesis in MDS has been attributed to high 

fractions of proliferating BM progenitors undergoing apoptotic cell death within an 

unexplained inflammatory microenvironment.196,288 Nearly two decades ago it was 

reported that MDS HSPC generate IL-1β in short term cultures, which directly correlated 

with the extent of cell death as measured by DNA fragmentation.99 We present evidence 

that these and other biological features of MDS are explained by the activation of the 

NLRP3 pattern recognition receptor by S100A9 and ROS DAMP intermediates that 
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Figure 30. Pyroptosis is manifest in MSC and stromal-derived lineages in MDS. 
(A-B) The mean percentage of (A) pyroptotic and (B) apoptotic cells by mesenchymal 
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lineage in lower-risk MDS (n=6) versus normal donors (n=6). (C-D) Mean percentage of 
(C) total a-caspase-1

+
 and (D) a-caspase-3/7

+
 cells in lower-risk MDS (n=6) versus 

normal donors (n=6). (E-F) Mean (E) a-caspase-1 MFI and (F) a-caspase-3/7 MFI. (G) 
Comparison of the mean percentage of pyroptotic versus apoptotic cells in lower-risk 
MDS specimens (n=6). (H) Comparison of the mean percentage of a-caspase-1

+
 versus 

a-caspase-3/7
+
 cells in the same lower-risk MDS patients (n=6). (I) Flow cytometric 

analysis of mean SSC-A intensity of BM-MNC by mesenchymal lineage isolated from 
normal donors (n=6) or lower-risk MDS patients (n=6). Error bars: SE, *p<0.05, 
**p<0.01 and ***p<0.001. 
 

induce inflammasome assembly, β-catenin nuclear translocation and pyroptotic cell 

death. Notably, pyroptosis-associated gene transcripts and inflammasome assembly 

are profoundly up-regulated in MDS independent of genotype. Moreover, pyroptotic but 

not apoptotic cells are markedly increased in MDS stem cells, progenitors and erythroid 

precursors. Accordingly, knockdown of NLRP3 and caspase-1, but not caspase-3, 

significantly reduced the pyroptotic cell fraction in MDS BM-MNC. MDS HSPCs are also 

selectively primed to undergo pyroptosis, due in part to up-regulation of pattern 

recognition receptors directing pyroptotic cell death, the expansion of MDSCs140 and 

transcriptional priming of inflammasome components. Importantly, neutralization of 

S100A9 in MDS BM plasma or pharmacologic inhibition of inflammasome assembly 

suppressed pyroptosis and restored effective hematopoiesis in vitro and in the 

S100A9Tg mouse model of MDS. Thus, pyroptosis, a caspase-1-dependent 

inflammatory cell death, impairs HSPC survival in MDS. 

S100A8/S100A9 heterodimers activate both NF-κB and NLRP3 inflammasome 

assembly via an NADPH oxidase (NOX)/ROS-dependent mechanism.258,266,267,314 

Intracellularly, S100A8/9 heterodimers serve as a scaffold for the membrane assembly 

and activation of the NOX complex,264,265 which generates ROS via transfer of electrons 
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across membranes to generate superoxide.259 As also shown here, NOX activity 

regulates both priming and activation of NLRP3 inflammasomes, including the activation 

of caspase-1 and IL-1β maturation.258 Moreover, transcription and nuclear localization of 

β-catenin are redox- and NOX1-dependent.285,286 Although MDSC are a key paracrine 

source of S100A9 in the MDS BM microenvironment,140 here we show that MDS HSPC 

also express high intracellular levels of S100A9 across lineages, suggesting that 

inflammasome activation may be sustained by intracrine DAMP stimulation which  

following cytolysis, may be reinforced by paracrine TLR4 activation and expansion of 

BM MDSC. Indeed, Schneider et al. recently reported that Rps14 haplodeficiency 

induces S100A8/9 expression to direct TLR4-dependent, cell-intrinsic death of 

polychromatic erythroblasts.167 Comparative transcriptome analysis also shows that 

S100A8/9 is highly up-regulated in Srsf2 P95H mutant as well as Ezh2-deleted mouse 

models.315,316 Additionally, our findings that catalytically-active pyroptotic ASC specks 

are released from the cytosol into the extracellular space suggest that specks may 

continue to reinforce bystander inflammation in the microenvironment in a non-cell 

autonomous fashion.298,317 Importantly, NOX1/4 inhibition suppresses the activation of 

the inflammasome and β-catenin in both MDS patient-derived BM-MNC and in cells 

harboring varied classes and types of MDS founder gene mutations. Thus, S100A9 

induces NOX1/4 activity to drive ROS-dependent inflammasome assembly, pyroptosis, 

and β-catenin activation, explaining the proliferation and inflammatory cell death 

manifest in MDS.   

Another hallmark of MDS is the larger cell size of BM precursors, or 

macrocytosis. A characteristic feature of NLRP3 inflammasome activation is cell 
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swelling due to the activation of cation channels in the plasma membrane.214 We show 

that activation of pattern recognition receptors triggers expansion in size and volume of 

MDS progenitors via influx of cations by membrane channels that are activated by NOX-

derived ROS.217,318-320 Our findings show that MDS BM-MNC display increased influx of 

the membrane impermeable, cationic dye ethidium bromide, confirming ion channel 

activation. Additionally, quantitation of BM cells according to lineage and stage of 

maturation confirmed a significantly larger size of MDS BM precursors versus normal 

controls that increased directly with NLRP3 mean fluorescence intensity. Thus, S100A9-

mediated NOX activation and inflammasome-initiated pyroptosis explain the 

characteristic larger cell size, proliferation and inflammatory cell death manifest in MDS. 

Somatic gene mutations in MDS trigger Rac1/NOX-dependent ROS 

generation,263,321 which we show activates both inflammasomes and Wnt/β-catenin 

signaling, a pathway known to promote leukemia stem cell self-renewal. NOX-derived 

ROS stabilize and activate β-catenin by oxidation and dissociation of nucleoredoxin 

(NRX) from disheveled (Dvl), which in turn inactivates the β-catenin destruction 

complex.287 Here we show that ROS and β-catenin nuclear localization are profoundly 

increased in MDS HSPC, and that S100A9 treatment of normal BM-MNC is sufficient to 

trigger NOX/ROS-dependent nuclear translocation of β-catenin and the activation of 

Wnt/β-catenin target genes. Similarly, BM-MNC from S100A9Tg mice, and BM 

progenitors that express varied RNA splicing gene mutations (U2AF1, SF3B1, SRSF2) 

and epigenetic regulatory gene mutations (ASXL1, TET2) found in MDS similarly 

undergo pyroptosis, pore formation, cell volume expansion and express high levels of 

nuclear β-catenin and Wnt/β-catenin target genes, which can be suppressed by 
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inhibition of the NLRP3 inflammasome or NOX1/4. Moreover, the proportion of 

pyroptotic erythroid progenitors in primary MDS specimens increases with somatic gene 

mutation allele burden and mutation complexity. Mechanistically, we show that the 

thioredoxin-interacting protein, TXNIP, serves as a redox sensitive ligand activating the 

NLRP3 inflammasome upon oxidative dissociation from thioredoxin in both MDS and 

splicing gene mutant cells.  Inflammasome nucleation in MDS is further reinforced by 

reduced expression of the pyrin domain-only protein (POP)-1, a dominant-negative ASC 

antagonist preventing NLRP3 and ASC polymerization. The forced expression of POP-1 

reduced NLRP3 inflammasome activation, indicating that MDS HSPCs are primed for 

NLRP3 inflammasome activation. Thus, both S100A9-induced NOX activation and MDS 

gene mutations initiate pyroptosis through superoxide generation to drive β-catenin 

activation and enable a proliferative advantage to the MDS clone. 

Lastly, the MDS stroma is known to be impaired in its ability to support normal, 

effective hematopoiesis. Murine models generated by MDS-related stromal 

abnormalities demonstrate that stromal defects can induce aberrances and dysplasia in 

otherwise normal hematopoietic cells.122 Conversely, normal MSC co-cultured with MDS 

patient-derived CD34+ HSPC adopt a phenotype characteristic of MDS-MSC.120,121 

These findings illustrate the complex interplay that exists between the hematopoietic 

and stromal cell compartments in MDS. Given that pro-inflammatory cytokines and 

DAMP signals are released upon cytolysis in pyroptosis, we hypothesized that cell 

death of hematopoietic cells can induce pyroptosis of neighboring stromal cells, 

resulting in cell death or injury of stromal lineages and consequent deficient support of 

hematopoiesis. Indeed, our data indicate that pyroptosis is significantly increased in 
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MSC, endothelial cells and osteoblasts in MDS compared to normal donors. Similar 

increases were observed in the percentage of a-caspase-1+ cells and a-caspase-1 MFI. 

Moreover, the pyroptotic cell fraction significantly exceeded the corresponding apoptotic 

cell fraction across stromal-derived lineages in MDS, indicating that the MDS stroma 

predominantly undergoes pyroptotic cell death.   

In conclusion, despite genetic heterogeneity, inflammasome activation underlies 

the biological phenotype in lower-risk MDS, whereby DAMP signals and MDS gene 

mutations license a common redox-sensitive inflammasome platform to drive pyroptotic 

death, elaborate inflammatory cytokines, activate cation influx, and support propagation 

of the MDS clone through β-catenin activation (Figure 31). These findings provide a 

common platform that accounts for the biological features of MDS and suggest that 

strategies targeting S100A9 neutralization or inhibition of pyroptosis signaling offer 

therapeutic promise in lower-risk MDS. 

 

Methods 

 

MDS patient specimens. MDS patients consented on The University of South 

Florida Institutional Review Board approved protocols were recruited from the Malignant 

Hematology Clinic at H. Lee Moffitt Cancer Center & Research Institute, and the 

Eastern Cooperative Oncology Group (ECOG) E2905 trial (NCT00843882). Pathologic 

subtype of MDS was reported according to World Health Organization (WHO) criteria 

and prognostic risk assigned according to the International Prognostic Scoring System 
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Figure 31. An S100A9/pyroptosis circuit provokes phenotypes manifest in MDS. 
(A) S100A8/A9 binds both CD33 and TLR4, resulting in inflammasome assembly. 
Ligation of S100A8/A9 to TLR4 results in NF-κB-mediated transcription and subsequent 
production of pro-inflammatory cytokines such as pro-IL-1β and pro-IL-18, along with 
inflammasome components. (B) Through interaction with Rac2 and p67phox, 
S100A8/A9 promotes activation of NOX, which results in a dual function. First, NOX 
proteins generate ROS, which serve to activate NLRs and inflammasome assembly. 
Second, NOX-derived ROS oxidize NRX, leading to its dissociation from Dvl. Once 
dissociated, Dvl suppress the β-catenin destruction complex (GSKβ/CK1/APC/Axin), 
resulting in stabilization of β-catenin. This allows β-catenin to enter the nucleus and 
induce transcription of TCF/LEF controlled genes, including Cyclin-D1 and c-Myc, which 
are essential to self-renewal. (C) Transient receptor potential melastatin 2 (TRPM2), a 
calcium-permeable cation channel in hematopoietic cells, is activated by NOX-derived 
ROS via oxidation of a single channel methionine residue, Met

214
. Upon activation, 

TRPM2 causes an influx of calcium leading to mitochondrial depolarization and further 
release of ROS, which activate the inflammasome complex. (D) Formation of the 
inflammasome complex occurs as a consequence of ROS activation and DAMP 
signaling. Once activated, inflammasomes mediate conversion of pro-caspase-1 to its 
mature and catalytically active form. Active caspase-1 cleaves pro-IL-1β and pro-IL-18 
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to their mature forms. (E) Pyroptosis ensues with loss of membrane integrity resulting in 
release of pro-inflammatory cytokines and other intracellular contents into the 
extracellular milieu. (F) MDS-related gene mutations activate NF-κB and NLRP3 via 
NOX-generated ROS. 
 

(IPSS). Patients were segregated as lower- (low, intermediate-1) and higher-risk 

(intermediate-2, high) MDS. 

Mice. S100A9Tg mice have been described.140 Wild type FVB/NJ mice were 

purchased from Jackson Laboratories (Bar Harbor, Maine). Bone marrow (BM) cells 

were isolated from tibias and femurs of male and female mice. 

Reagents and cells. Parental TF-1 cells and TF-1 cells engineered to express 

mutant U2AF1 were cultured in RPMI-1640 supplemented with 10% FBS and 2 ng/mL 

recombinant human GM-CSF. Normal, heparinized BM aspirates were purchased from 

Lonza Walkersville or AllCells, LLC.  Normal and MDS BM mononuclear cells (BM-

MNC) were isolated from heparinized BM aspirates using Ficoll-Hypaque Plus gradient 

centrifugation (GE Healthcare). Recombinant human S100A9 and the CD33/Siglec 3 

chimeric fusion protein were generated as described.140  NAC and DPI were purchased 

from Sigma. Active caspase-1 and caspase-3/7 were detected using FAM-FLICA® 

Caspase-1 and Caspase-3/7 activity kits, (ImmunoChemistry Technologies). NLRP3 

antibodies were purchased from Abcam (ab4207) or AdipoGen (AG-20B-0014), and β-

catenin antibodies from BD Biosciences (610154). Caspase-1 antibodies (#3866) were 

purchased from Cell Signaling Technology, Inc. IL-1β antibodies (AF-201-NA) were 

acquired from R&D Systems, Inc. 

Immunofluorescence confocal microscopy. MDS BM-MNC, normal donor 

BM-MNC and mouse BM cells were stained with 30x FAM-FLICA® Caspase-1 solution 
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at a ratio of 1:30 for 2 hr at 37°C. Cells were washed and cytospins were generated 

using a 5 min centrifugation at 450 rpm. Slides were fixed at 37°C for 10 min using BD 

Cytofix Fixation Buffer (BD Biosciences), and then washed with PBS. Cells were 

permeabilized with 0.1% Triton X-100/2% BSA in PBS for 15 min at room temperature. 

After washing with PBS, cells were blocked using 2% BSA in PBS for 30 min at room 

temperature and washed again. Cells were incubated with the appropriate primary 

antibody overnight (1:400 for NLRP3, 1:20 for β-catenin) at 4°C. The next day, cells 

were washed with PBS and incubated with the appropriate secondary antibodies 

(1:500) for 1 hr at room temperature. After washing, cells were covered with ProLong 

Gold Antifade Reagent with DAPI prior to the addition of a coverslip (Life Technologies).  

Co-localization of a-caspase-1 with NLRP3 inflammasomes was assessed using 

a Leica TCS SP5 AOBS Laser Scanning Confocal microscope (Leica Microsystems). 

Analysis of images was performed with Definiens Developer 2.0 (Definiens AG), which 

distinguishes cells based on brightness and size thresholds, followed by a watershed 

segmentation algorithm. Intensity values and Pearson’s correlation coefficient were 

extracted from the segmented cells. For β-catenin image analysis, confocal images 

were imported into Definiens Tissue Studio v3.0, 64 Dual in .tif format. Cells were 

separated from background using the RGB thresholds. Nuclei were identified by setting 

thresholds in the DAPI channel. β-catenin intensity in the nucleus and cytoplasm was 

established by setting thresholds to low, medium and high in the red channel on a scale 

of 0-255. 

Flow cytometry analyses. For human samples, treated and untreated BM-MNC 

were incubated overnight in IMDM, supplemented with 10% autologous BM plasma. 



www.manaraa.com

 
 

124 

Cells were then harvested, washed twice in PBS, and stained with LIVE/DEAD Violet 

fluorescent reactive dye (Life Technologies) and Zombie NIR Viability dye (BioLegend) 

according to the manufacturer’s protocols. Cells were resuspended in 1x PBS with 2% 

BSA, and incubated at room temperature for 15 min to block non-specific binding. After 

washing, cells were stained with 30x FAM-FLICA® Caspase-1 and Caspase-3/7 

solution at a ratio of 1:30 for 2 hr at 37°C. For flow cytometry analyses of phenotypically 

distinct hematopoietic lineages, human cells were washed and stained for cell surface 

receptors using CD38:PE-CF594, CD33:BV711, CD34:APC (BD Biosciences, 562288, 

563171, 555824, respectively), and CD71:PE-Cyanine7 (eBioscience, 25-0719-42). For 

analyses of phenotypically distinct stromal cell lineages, human cells were washed and 

stained for cell surface receptors using CD105:BUV395, CD31:FITC, CD34:BUV395 

(BD Biosciences, 563803, 553372, 563778, respectively) and osteocalcin:Alexa Fluor 

488 (R&D Systems, IC1419G). Mouse cells were washed and stained for cell surface 

receptors using Lineage Cocktail:V450, CD117:BUV395, and Ly-6A/E:BV786 (BD 

Biosciences, 561301, 564011, 563991, respectively). All antibodies were diluted 1:20, 

and cells were stained for 30 min at 4°C. Cells were washed, resuspended in 1x binding 

buffer, and stained with Annexin-V:PE or Annexin-V:V500 at a dilution of 1:20 for 15 min 

at room temperature (BD Biosciences, 556421) for hematopoietic and stromal cell 

lineage panels, respectively. 1x binding buffer was added to a final volume of 400 µL.  

ASC staining was carried out as described.298 Briefly, cell pellets were 

resuspended in 1 mL of prewarmed BD Permeabilization Buffer III, and incubated on ice 

for 30 min. Cells were washed 2x with staining buffer. Following washing, cells were 

stained with rabbit-anti-ASC primary antibodies at a 1:1500 dilution and incubated for 90 
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min (Santa Cruz, sc-22514-R). Cells were washed, stained with secondary antibodies at 

a dilution of 1:1500, and incubated for 45 min. Cells were washed, and sample 

acquisitions were carried out using a BD LSR II flow cytometer and FACSDiva software. 

For ASC speck detection, 400 µg of protein in BM plasma from normal donors 

and MDS patients was stained with rabbit-anti-ASC primary antibodies at a 1:1500 

dilution and incubated for 90 min. Secondary antibodies were added at a dilution of 

1:1500 and incubated for 45 min. Sample acquisitions were carried out using a BD 

FACSCalibur flow cytometer. Threshold for FSC and SSC were set to zero to allow 

detection of specks.  

Sample acquisitions were carried out using a BD LSR II flow cytometer and 

FACSDiva software (BD Biosciences). Calibration was carried out prior to each 

experiment using Rainbow Mid-Range Fluorescent Particles (BD Biosciences). To 

establish compensation settings, ArC Amine Reactive Compensation Beads were used 

for viability staining (Life Technologies), and BD CompBead Plus Anti-Mouse Ig 

κ/Negative Control (BSA) Compensation Plus Particles and Anti-Rat and Anti-Hamster 

Ig κ/Negative Control Compensation Particles Set were used for surface receptor 

conjugates for human and murine studies, respectively (BD Biosciences). Data were 

analyzed using FlowJo 9.7.5 software (FlowJo, LLC). Gating strategies for evaluating 

the extent of pyroptosis versus apoptosis in normal/MDS specimens and WT/S100A9Tg 

mice are illustrated in Figure 32. 

Lentiviral infection of primary mononuclear cells. Lentiviral constructs were 

purchased from Origene. NLRP3 (TL30582b), Caspase-1 (TL305640), Caspase-3 

(TL305638b) and scrambled (TR30021) HuSHTM shRNA plasmids were amplified by 
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Figure 32. Flow cytometry gating strategies for evaluating the extent of 
pyroptosis versus apoptosis in normal/MDS specimens and WT/S100A9Tg mice. 
The gating strategies depicted take place after gating for cell lineage was carried out. 
(A) For normal donors and MDS specimens, the gates for annexin-V, a-caspase-1 and 
a-caspase-3/7 positivity were identified using fluorescence minus one (FMO) controls. 
The annexin-V positive cells were then stratified by a-caspase-1 and a-caspase-3/7 
positivity. Using the gates identified for a-caspase-1 and a-caspase-3 positivity, a 
quadrant plot was made. Apoptotic cells were defined as annexin-V+/a-caspase-1-/a-
caspase-3/7+ and pyroptotic cells annexin-V+/a-caspase-1+/a-caspase-3/7+. (B) 
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Representative density plots from a normal BM donor versus an MDS specimen. 
Annexin-V positive cells from the stem cell (CD34+CD38-), progenitor (CD34+CD38+), 
immature myeloid (CD33+) and erythroid (CD71+) populations were stratified according 
to a-caspase-1 and a-caspase-3/7 positivity, allowing for the characterization of the 
extent of pyroptotic versus apoptotic cell death. (C) For WT/S100A9Tg mice analyses, 
the gates for annexin-V, a-caspase-1 and a-caspase-3/7 positivity were identified using 
FMO controls and a quadrant plot stratifying the annexin-V positive cells according to a-
caspase-1 and a-caspase-3/7 expression was created as described in (A). (D) 
Representative density plot from a WT versus a S100A9Tg sample. The plot depicts the 
extent of pyroptosis versus apoptosis in the LSK positive HSPC population. 
 

transforming One Shot® Top10 competent cells (Life Technologies) according to 

manufacturer’s protocol. Single colonies were expanded and plasmid DNA prepared 

using the Qiagen QIAprep® Mini Prep Kit. HEK293T cells were transfected by 

incubating 2600 ng of shRNA plasmid, 30 µL Lipofectamine® 2000 (Invitrogen) and 26 

µL MISSIONTM Lentiviral Packaging Mix (Sigma) in 500 µL of Opti-MEM®I (Life 

Technologies) for 15 min at room temperature. This mixture was then added to 70% 

confluent HEK293T cells with 4 mL Opti-MEM®I medium without serum in a 100 mm 

dish. After 6 hr, 6 mL of DMEM with 10% FBS (Mediatech) was added. After 16 hr, 

medium was changed and 10 mL fresh DMEM was added. Virus was collected at 48 

and 72 hr using 0.45 µm filters. The titer was at least 5 x 105 IFU/mL and virus was 

stored at 4 °C.  

For primary cell infections with caspase-1 and caspase-3 lentivirus, 2.5x106 cells 

were plated in a 100 mm dish with 1.25 mL virus, 1.25 mL opti-MEM®I and 8 µg/mL 

polybrene. Cells were incubated overnight, then 5 mL of fresh IMDM with 10% FBS 

(Mediatech) was added. RNA was isolated 72 hr after infection using Qiagen RNeasy 

Isolation Kit. mRNA levels were analyzed by qPCR using GAPDH mRNA levels as a 

control. For primary cell infections with NLRP3 lentivirus, 2x106 cells were plated in a 24 
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well plate with 500 µL fresh virus, 500 µL Opti-MEM®I and 8 µg/mL polybrene. The 

plate was spun at 2,200 rpm for 90 min. After 1 hr, 5 mL of fresh IMDM was added. 

Knockdown efficiency of NLRP3 protein was determined by flow cytometry. For both 

infection protocols, 10% v/v of autologous BM plasma was added to the cells at 72 hr. 

Cells were stained with annexin-V, 7-AAD, and FAM-FLICA® Caspase-1 and analyzed 

using a BD FACSCalibur flow cytometer 24 hr after plasma was added. 

Enzyme-linked immunosorbent assays (ELISA). Human S100A9 DuoSet 

ELISA kit was purchased from R&D Systems and HMGB1 ELISA kit was purchased 

from MYBioSource. ELISA assays were performed according to manufacturer’s 

protocol.  

Intracellular S100A9 flow cytometry. BM-MNC were incubated overnight in 

IMDM medium with 10% autologous BM plasma. Cells were then harvested, washed 

twice in 1x PBS, fixed with BD Cytofix Fixation Buffer at 37°C for 10 min, and stored at -

80°C until staining. For staining, cells were warmed to 37°C, spun down, and washed 

twice with staining buffer. Cells were suspended in 1 mL of pre-warmed BD 

Permeabilization Buffer III, incubated on ice for 30 min, washed twice with staining 

buffer and stained with antibodies at a 1:20 dilution for 30 min at 4°C (S100A9:FITC 

[BioLegend]; CD38:PE-CF594; CD33:BV711; CD34:APC [BD Biosciences]; and 

CD71:PE-Cyanine7 [eBioscience]). Cells were washed and resuspended in 400 µL 

staining buffer. Sample acquisitions were performed using a BD LSR II flow cytometer 

and FACSDiva software (BD Biosciences). 

Pore formation assay. MDS and normal donor BM-MNC were incubated in 10% 

autologous BM plasma at 37°C overnight. Cells were then washed and suspended in 1 
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mL of PBS with 12.5 µg/mL ethidium bromide (Fisher Scientific). Sample acquisitions 

were acquired using a BD FACSCalibur flow cytometer at 5 min intervals.  

Real-time quantitative PCR. RNA was isolated from BM-MNC using the 

RNeasy Mini Kit (Qiagen). cDNA was produced using the iScript cDNA Synthesis Kit 

(Bio-Rad). Sequences for primers can be found in Table 4. GAPDH mRNA was used for 

transcript normalization. cDNA was amplified using the iQ SYBR Green Supermix and 

the CFX96 Real-Time PCR Detection System (Bio-Rad). PCR conditions were as 

follows: 10 min at 95°C, followed by 40 cycles of amplification (15 seconds at 95°C and 

1 min at 60 °C). Relative gene expression was calculated using the -2ΔΔCt method. 

 
Table 4. Primer sequences used for real-time quantitative PCR. 

 

Colony formation assays. For MDS assays, 4 replicates of 3.5x105 BM-

MNC/mL were resuspended in 10% autologous BM plasma and plated in MethoCult 

methylcellulose medium (Stemcell Technologies) supplemented with 1% v/v penicillin-

streptomycin and 3 units/mL erythropoietin (Epo). CD33-IgG and MCC950 were added 

directly to the medium prior to plating. BFU-E, CFU-GM and CFU-GEMM colonies were 

scored using an inverted light microscope 14 days after plating.  For assays of TF-1 

cells expressing mutant U2AF1, 4 replicates of 3x104 cells/mL were plated in medium 

supplemented with 1% v/v penicillin-streptomycin and increasing concentrations of 
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ICTA. Colonies were counted 7 days after plating. For colony assays of primary Sf3b1-

K700E mouse BM cells, BM cells were isolated from 4 mice per condition and 4 

replicates of 3.5x105 BM cells/mL were plated in MethoCult with increasing 

concentrations of ICTA. Colonies were scored 14 days after plating. 

ROS detection. ROS levels were determined using CellROX® Deep Red 

Reagent using the manufacturer’s protocol (Life Technologies). 

ICTA mouse treatment studies. ICTA was synthesized by the Drug Discovery 

Core Facility at H. Lee Moffitt Cancer Center & Research Institute. Six month old 

S100A9Tg (n=5) were dosed every other day with 50 mg/kg ICTA by oral gavage, for a 

total of eight weeks.   

SRSF2 transfection of HEK293T cells. HEK293T cells were transfected by 

incubating 4 µg of SRSF2 expression plasmid with 10 µL Lipofectamine® 2000 in 100 

µL of Opti-MEM®I for 20 min at room temperature. This mixture was added to 70% 

confluent HEK293T cells with 2 mL Opti-MEM®I medium without serum in a 6 well 

plate. Cells were incubated at 37°C for 4 hr in a humidified chamber, then medium was 

replaced with 2 mL of DMEM with 10% FBS. Cells were treated with NAC and DPI 24 hr 

later, and subsequent analyses were carried out 48 hr following transfection. 

Immunoblotting. U2AF1-S34F-expressing TF-1 cells were treated for 24 hr as 

indicated and harvested. Normal and lower-risk MDS BM-MNC were thawed and 

pelleted. Samples were lysed in 1x RIPA buffer (250 µM NaOV4, 2 µg/mL aprotinin, 2 

µg/mL leupeptin, 0.2 µg/mL pepstatin A and 500 µM PMSF), and proteins were resolved 

by SDS-PAGE and transferred to PVDF membranes. Membranes were blocked for 30 

min in 5% dry milk PBS-T solution (1x PBS, Tween®20), and incubated overnight with 
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the indicated antibody. For caspase-1 detection, the membrane and indicated antibody 

were incubated in TBS-T solution (1x TBS, 5% w/v BSA, 0.1% Tween®20). The next 

day, membranes were washed and secondary antibodies were incubated for 3 hr. 

Membranes were developed using ECL or ECL+ according to manufacturer’s protocol 

(Thermo Scientific).   

Immunoprecipitation. Following lysis, 200 µg of protein were incubated with 2 

µg of the indicated antibody on ice for 2 hr. 50 µL of Protein A Agarose beads (EMD 

Millipore) were added to each sample, and bead-lysate slurries were incubated 

overnight at 4°C on a rotator. The next day, samples were washed with 500 µL of lysis 

buffer three times. Beads were dissociated at 95°C for 5 min following addition of 

sample buffer. Proteins were separated by SDS-PAGE and analyzed by 

immunoblotting. 

ASC crosslinking. For normal and MDS BM-MNC, 10x106 cells were incubated 

overnight in autologous plasma. Cells were harvested,  washed twice with 1x PBS and 

lysed with 100 µL of 1x RIPA buffer containing 1 tablet of Complete PhosStop (Roche 

Diagnostics, Indianapolis, IN) for 10 min on ice. Samples were spun down at 5,000 rpm 

for 10 min at 4°C, and cell lysates were removed and saved. Cell pellets were washed 

twice with 1x PBS, spun at 5,000 rpm for 10 min at 4 °C for each wash, and cells were 

resuspended in 100 µL of 1x PBS.  Disuccinimidyl suberate (2 mM) (DSS, 

ThermoScientific) was then added, samples were incubated on a rotator for 30 min at 

room temperature, and then spun down at 5,000 rpm for 10 min at 4°C. The 

supernatant was removed and saved. 20 µL of sample buffer was added to the saved 
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lysate and supernatant samples, and the crosslinked pellet was resuspended in 30 µL. 

Samples were boiled at 99°C for 5 min and proteins resolved by SDS-PAGE. 

Next-generation sequencing and mutation identification. DNA was extracted 

from 40 total PB and BM samples. Target amplification of DNA for each sample was 

performed using the GeneRead DNAseq Panel PCR Kit V2 (Qiagen). Target regions of 

26 common genes and genotype fingerprint regions were enriched using the Human 

Colorectal Cancer Panel according to manufacturer instructions. Samples were 

barcoded using NEXTflex-96™ DNA Barcodes (Bioo Scientific) and pooled in equal 

amounts before running on an Illumina MiSeq 2000. Sequence reads were aligned to 

the human genome using the GeneRead Targeted Exon Enrichment Panel Data 

Analysis (Qiagen). Sample data with synonymous variants, noncoding variants and 

variants present in databases of normal genomes (i.e., ESP6500) were discarded. 

Remaining variants were filtered to contain more than 50x coverage and variant 

frequencies greater than 0.2. Of these variants, those that were present in COSMIC, or 

those not present in COSMIC but having SIFT scores ≤0.05 and Polyphen scores 

≥0.909, were considered candidate somatic mutations. Clinical and mutational patient 

characteristics are summarized in Table 5. 

POP-1 overexpression. PYDC1 expression (RC211240) and empty control 

(PS100001) vectors were purchased from Origene Technologies, Inc.  5 µg of plasmid 

was added to 6 million cells suspended in 100 µL electroporation solution (Ingenio® 

Solution, Mirus Bio LLC.) and electroporated using Amaxa Nucleofector® program T-20 

(Lonza Cologne AG, Germany).  Cells were resuspended in 30 mL of appropriate 
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Table 5. Clinical and genotypic characteristics of sequenced patients. Bone 
marrow (BM) or peripheral blood (PB) samples were obtained for DNA extraction and 
sequencing. Patients were characterized according to WHO diagnostic classifications: 
(i) refractory anemia with ring sideroblasts (RARS); (ii) refractory anemia (RA); (iii) 
refractory cytopenia with multilineage dysplasia (RCMD); and (iv) refractory anemia with 
excess blasts (RAEB). Risk stratification was determined by IPSS classification:  0, low; 
1, intermediate-1; 2, intermediate-2; 3, high risk. For each patient, genes without 
mutations are blank, and those harboring mutations are identified by a plus (+).  Data 
that was unavailable is listed as NA. 
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growth medium.  Expression and functional assays were performed 48 hr after 

transfection. 

Statistical analyses. Data are expressed as means ± standard error. Statistical 

analyses were carried out in Microsoft Excel using student’s t-test. *P values <0.05, 

**p<0.01, and ***p<0.001 were considered to be statistically significant. Correlations 

were performed using chi-squared test for non-continuous variables and logistic 

regression for continuous variables. Comparisons of all pyroptotic parameters and 

somatic gene mutation variant allele frequency (VAF) were performed using chi-squared 

test for binary variables and Mann-Whitney and Kruskal-Wallis tests for continuous 

variables. These analyses were performed using SPSS software v22 (SPSS, Inc.). 
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CHAPTER 3 

Pyroptosis of Erythroid Progenitors Accounts for the Erythroid Defect 
Characteristic of the 5q- Syndrome 

 

Introduction 

Identified in 1974, the 5q- syndrome represents a distinct subtype of 

myelodysplastic syndromes (MDS) characterized by a clonal, interstitial deletion of the 

long arm of chromosome 5 [del(5q)].35 Patients with del(5q) MDS generally present with 

a progressive, macrocytic and hypoplastic anemia with normal or elevated platelet count 

and dysplastic, oligonuclear megakaryocytes,150 suggesting that the major 

hematopoietic defect lies within the erythroid compartment. Accordingly, anemia 

remains the principal therapeutic challenge for patients with del(5q) MDS, as 

approximately 93% of patients will become transfusion-dependent in the course of their 

disease.151 Lenalidomide, a second-generation immunomodulatory drug (IMiD), is FDA-

approved for del(5q) MDS and represents the standard of care for this subset of 

patients for over a decade.45 Although approximately 83% of lenalidomide-treated 

patients respond quickly and become transfusion-independent, 50% of these will 

develop resistance within two or three years,322 illustrating the need for novel 

therapeutic agents.  

The commonly deleted region (CDR) in del(5q) MDS encompasses a gene-rich 

area on chromosome 5, spanning approximately 1.5-megabases or 40 genes.154 Using 

array-based transcriptome analyses together with gene sequencing, haploinsufficiency 
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of select 5q- genes has been implicated in disease pathobiology, as no mutations have 

been described in the other allele to date.155 Subsequent studies have confirmed that 

haploinsufficient loss of ribosomal protein S14 (RPS14), casein kinases 1A1 

(CSNK1A1), TRAF-interacting protein with forkhead-associated domain B (TIFAB), 

diaphanous related formin 1 (DIAPH1, also known as mDia1) and the microRNAs 

(miR)-145 and -146a contribute to disease biology.117,160,169,171,173 Notably, 

haploinsufficent loss of these key target genes in murine models results in marrow-

related changes characteristic of MDS, but more importantly, a severe and progressive 

anemia, confirming that the hemizygous loss of these genes contributes to the erythroid 

defect observed in MDS.  

Mechanistically, these murine models implicate activation of p53 (RPS14), β-

catenin (CSNK1A1) and the TLR4/TRAF6/NF-κB signaling axis (miR-145/miR-146a, 

TIFAB, DIAPH1) in the pathobiology of del(5q) MDS. Although these individual 

mechanisms are well supported, a unifying mechanism by which loss of a diverse set of 

genes allows for del(5q) MDS development remains unclear. Recently, we reported that 

danger associated molecular pattern (DAMP) signals, like S100A9, and a diverse set of 

somatic gene mutations (including U2AF1, SRSF2, SF3B1, ASXL1 and TET2) activate 

the redox-sensitive NLRP3 inflammasome pathway in non-del(5q) MDS.199 NLRP3 

inflammasome activation drives pyroptotic cell death and activation of β-catenin, 

effectively accounting for the central hallmarks of non-del(5q) disease, specifically 

significant cell death in the context of proliferation. Given that haploinsufficiency of a 

diverse set of genes results in del(5q) MDS, we hypothesized that activation of the 

NLRP3 inflammasome in these patients may function as a unifying pathobiologic 
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mechanism, akin to that observed in non-del(5q) disease. To this end, we investigated 

the role of NLRP3 inflammasome activation in two distinct murine models of del(5q) 

MDS, namely in the context of Rps14 haploinsufficiency and concurrent loss of mDia1 

and microRNA (miR)-146a, as well in a preliminary cohort of del(5q) patient specimens.  

 

Results 

 

Rps14 haploinsufficiency induces NLRP3 inflammasome activation in 

erythroid progenitors but not HSPC. NLRP3 inflammasome activation was assessed 

in a murine model of Rps14 haploinsufficiency, whereby Rps14 is conditionally reduced 

to haploinsufficent levels in hematopoietic cells, specifically.167 Whole bone marrow 

(BM) cells were isolated from Rps14 and wild type (WT) littermates. Using confocal 

fluorescence microscopy, NLRP3 activation was measured by the co-localization of 

cleaved or active (a)-caspase-1 and NLRP3 (Figure 33A). BM cells from Rps14 mice 

evidenced robust formation of NLRP3 inflammasome complexes, warranting further 

investigation of NLRP3-mediated signaling events.  

For one, NLRP3 activation results in pyroptosis, a caspase-1-dependent, pro-

inflammatory cell death. Typical cell death markers, like annexin-V and propidium iodide 

(PI), cannot distinguish apoptosis from pyroptosis. Instead, these types of programmed 

cell death are reliably distinguishable by flow cytometry using the markers annexin-V, a-

caspase-1 and a-caspase-3.199 Specifically, apoptotic cells are defined as a-caspase-1-

/a-caspase-3/7+/annexin-V+ and pyroptotic cells as a-caspase-1+/a-caspase-

3/7+/annexin-V+. We first investigated pyroptosis of the hematopoietic stem and 
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Figure 33. Rps14 haploinsufficiency induces NLRP3 inflammasome activation in 
erythroid progenitors but not HSPC. Data are representative of BM cells harvested 
from WT (n=5) and Rps14 haploinsufficient (n=7) mice. (A) Representative confocal 
fluorescence micrograph (2520x magnification) of active (a)-caspase-1 and NLRP3 
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expression in Rps14 haploinsufficient BM cells versus WT controls. DAPI (blue), a-
caspase-1 (green), NLRP3 (red); merged images show inflammasome formation. (B-C) 
The mean percentage of (B) pyroptotic and (C) a-caspase-1

+
 cells in ungated, lineage 

negative (Lin
-
) and LSK (Lin

-
Sca-1

+
c-Kit

+
) positive hematopoietic stem and progenitor 

(HSPC) cells. (D) Representative scatter plots of RI-RIV erythroid progenitor BM cells 
isolated from WT and Rps14 haploinsufficient mice. Erythroid populations are gated 
according to expression of CD71 and Ter119. (E) Quantitation of inflammasome 
activation based on ASC oligomerization in BM RI-RIV erythroid progenitors from WT 
and Rps14 haploinsufficient mice. (F) Fold reduction in the mean percentage of ASC

+
 RI 

and RIV erythroblasts following treatment of Rps14 BM cells with DPI [2 µM] and ICTA 
[20 µM] for 24 hours in vitro. Error bars: SE, *p<0.05 and **p<0.01. 
 

progenitor cell (HSPC) population in the Rps14 haploinsufficient versus the WT bone 

marrow, as pyroptotic cell death of this population is characteristic of non-del(5q) 

MDS.199 HSPC are identifiable in mice as LSK (Lin-Sca-1+c-Kit+) positive. Notably, the 

mean percentage of pyroptotic (Figure 33B) and a-caspase-1+ (Figure 33C) HSPC did 

not differ in Rps14 haploinsufficient and WT mice. 

Since this model is characterized by a progressive anemia,167 we next 

investigated NLRP3 inflammasome activation in erythroid progenitors from four month-

old mice. Maturation of murine erythroid precursors is readily assayed by flow cytometry 

through the differential expression of the markers CD71 and Ter119, which are also 

referred to as transferrin receptor protein 1 (TfR1) and lymphocyte antigen 76 (Ly76), 

respectively.167 Four distinct erythroid populations can be characterized from least to 

most mature: RI, basophilic/early chromatophilic (CD71+Ter119+); RII, 

polychromatophilic (CD71intermediateTer119+); RIII, orthochromatophilic (CD71lowTer119+); 

RIV, enucleated erythrocytes (CD71-Ter119+). Compared to WT controls, Rps14 

haploinsufficient mice demonstrated dramatic reductions in erythroid populations, 

particularly the RIII and RIV subsets (Figure 33D).  
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Notably, assessment of NLRP3 inflammasome oligomerization and activation 

can be measured by flow cytometric changes in fluorescence pulse height and area 

measurements of the inflammasome adaptor protein ASC.297 ASC functions to recruit 

pro-caspase-1 to the site of the inflammasome, whereby its incorporation and 

oligomerization forms mature complexes, effectively serving as a surrogate marker of 

NLRP3 activation.297 The percentage of ASC+ RI and RII erythroblasts was significantly 

increased in Rps14 haploinsufficient BM compared to WT controls (Figure 33E), 

suggesting that NLRP3 inflammasome activation is manifest in early stage 

erythropoiesis. As NLRP3 is redox-sensitive and is activated in response to NADPH 

oxidase (NOX)-derived ROS, we next tested whether inhibition of NOX using 

diphenyleneiodonium (DPI) or inhibition of NLRP3 using the icariin derivative ICTA can 

reduce NLRP3 activation in the context of Rps14 haploinsufficiency. Indeed, treatment 

with DPI or ICTA resulted in approximately 15-30% reduction in the proportion of ASC+ 

RI and RII erythroblasts, respectively (Figure 33F). 

Rps14 haploinsufficient erythroid precursors predominantly undergo 

pyroptosis. Next, we aimed to investigate the extent of pyroptosis versus apoptosis in 

the context of Rps14 haploinsufficieny within erythroid subsets. The mean percentage 

of pyroptotic RI-RIII erythroblasts was significantly increased in the Rps14 

haploinsufficient mice compared to normal controls (Figure 34A), whereas no significant 

differences were detected in the corresponding apoptotic cell fraction (Figure 34B). 

Accordingly, the mean percentage of a-caspase-1+ cells (Figure 34C) and a-caspase-1 

mean fluorescent intensity (MFI) (Figure 34D) were significantly increased in Rps14 RI-

RIII erythroblasts compared to WT controls. Though a-caspase-3/7 MFI was 
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Figure 34. Rps14 haploinsufficient erythroid progenitors predominantly undergo 
pyroptotic cell death. Data are representative of BM cells harvested from WT (n=5) 
and Rps14 haploinsufficient (n=7) mice. (A-C) The mean percentage of (A) pyroptotic, 
(B) apoptotic and (C) a-caspase-1

+
 RI-RIV erythroid progenitors in Rps14 

haploinsufficient BM cells compared to WT controls. (D-E) Mean fluorescence intensity 
(MFI) of (D) a-caspase-1 and (E) a-caspase-3/7 in RI-RIV erythroblasts in Rps14 
haploinsufficient BM cells compared to WT controls. (F) Comparison of the mean 
percentage of a-caspase-1 versus a-caspase-3/7 MFI in the RI-RIV populations in 
Rps14 haploinsufficient mice. (G) Colony forming capacity was assessed in BM cells 
isolated from WT versus Rps14 haploinsufficient mice. The mean number of erythroid 
and granulocyte-macrophage (CFU-GM) colonies are represented. (H-I) Fold change of 
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(H) CFU-GM and (I) erythroid colony forming capacity in Rps14 haploinsufficient BM 
cells treated with increased concentrations of the NLRP3 inhibitor ICTA [2-20 µM]. Error 
bars: SE, * p<0.05, **p<0.01 and ***p<0.001. 

 

significantly increased in Rps14 BM RI-RIII compared to normal (Figure 34E), these 

data are not surprising as caspase-3 is activated downstream of caspase-1 during 

pyroptosis. More importantly, comparison of a-caspase-1 and a-caspase-3/7 MFI in 

Rps14 haploinsufficient RI-RIV erythroblasts confirms that caspase-1 activation 

significantly exceeds caspase-3/7 activation in each erythroid population (RI-RIV) 

(Figure 34F). Together, these data demonstrate that attrition of erythroid progenitors in 

Rps14 haploinsufficient BM is mediated primarily by pyroptotic cell death.  

Lastly, the erythroid defect in the Rps14 haploinsufficient mice was corroborated 

in colony formation assays, whereby a significant reduction in erythroid colony forming 

capacity was evidenced in the Rps14 mice compared to WT controls (Figure 34G). No 

difference was observed in granulocyte/monocyte (CFU-GM) colony forming capacity 

(CFC) between the two groups (Figure 34G). Notably, while treatment of Rps14 BM 

cells with ICTA had no effect on granulocyte-macrophage CFC (Figure 34H), ICTA 

treatment significantly increased erythroid CFC in a concentration-dependent manner 

(Figure 34I). These findings indicate that NLRP3 inhibition can rescue erythropoiesis in 

the context of Rps14 haploinsufficiency, a mechanism distinct from the cytotoxic effect 

of lenalidomide in del(5q) MDS.   

ROS and β-catenin activation are significantly increased in Rps14 

haploinsufficient erythroid progenitors. Somatic gene mutations are known to 

increase levels of reactive oxygen species (ROS), which like DAMP signals, can direct 

activation of β-catenin.302-305 In non-del(5q) MDS, we demonstrated that NOX-derived 
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ROS activate the redox-sensitive NLRP3 inflammasome, triggering not only pyroptosis, 

but also activation of β-catenin.199 We hypothesized that the loss of genetic material 

through chromosome 5 deletion in del(5q) MDS would additionally trigger increased 

ROS production  and consequent nuclear localization of β-catenin. The percentage of 

ROS+ cells (Figure 35A) and ROS MFI (Figure 35B) were significantly increased in the 

BM of Rps14 mice compared to controls. Investigation of the RI-RIV erythroid lineage 

populations illustrated that the early RI erythroblasts in the Rps14 haploinsufficient mice 

had a significant increase in the percentage of ROS+ cells (Figure 35C) and ROS MFI 

(Figure 35D) versus normal controls. No significant differences were observed in the 

RII-RIV populations. Notably, treatment of Rps14 haploinsufficient BM cells with DPI or 

ICTA resulted in a dramatic reduction in the percentage of ROS+ cells (Figure 35E) and 

ROS MFI (Figure 35F), demonstrating that inhibition of NOX or NLRP3 can reduce 

ROS. Lastly, nuclear localization of β-catenin, representative of its transcriptionally 

active form, was assessed using confocal fluorescence microscopy in BM cells 

harvested from WT mice, Rps14 haploinsufficient mice or Rps14 cells treated with DPI. 

Whereas Rps14 haploinsufficient cells evidenced significant nuclear localization of β-

catenin, nuclear expression was negligible in WT littermates (Figure 35G). Importantly, 

treatment of Rps14 cells with DPI reduced active β-catenin to levels similar to WT 

controls (Figure 35G). These data demonstrate that ROS and β-catenin activation are 

increased in the context of Rps14 haploinsufficiency in a NOX- and NLRP3-dependent 

manner.  

Concurrent loss of mDia1 and miR-146a results in pyroptotic cell death of 

erythroid precursors. Next, we investigated an alternative murine model of del(5q) 
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Figure 35. ROS and β-catenin activation are markedly increased in erythroid 
progenitors in the context of Rps14 haploinsufficiency. Data are representative of 
BM cells harvested from WT (n=5) and Rps14 haploinsufficient (n=7) mice. (A-B) Mean 
(A) percentage and (B) MFI of ROS in ungated WT and Rps14 haploinsufficient BM 
cells. (C-D) Mean (C) percentage and (D) MFI of ROS in RI-RIV erythroid progenitors 
from WT and Rps14 haploinsufficient BM cells. (E-F) Mean (E) percentage and (F) MFI 
of ROS in RI-RIV erythroid progenitors from Rps14 haploinsufficient BM cells treated for 
24 hours with DPI [2 µM] and ICTA [20 µM]. (G) Representative micrograph (2520x 
magnification) of β-catenin expression in BM cells from WT, Rps14 haploinsufficient or 
Rps14 cells treated with DPI [2 µM] for 24 hours. DAPI (blue), β-catenin (red); merged 
images show nuclear β-catenin localization. Error bars: SE, *p<0.05 and **p<0.01. 
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MDS, namely the concurrent loss of both mDia1 and miR-146a, two genes located 

within or near the CDR and haplodeficient in del(5q) MDS. Loss of these 5q- genes 

results in hypersensitivity to the TLR4/TRAF6/NF-κB signaling axis, which is 

deregulated in both non-del(5q) and del(5q) MDS.117,174 More specifically, mDia1 has 

known roles in innate immune cell activation.174-176 Loss of mDia1 results in a significant 

increase of the TLR4 co-receptor CD14 on granulocytes, sensitizing cells to TLR4 

ligands such as LPS and resulting in aberrant innate immune activation.174 Furthermore, 

as miR-146a targets TNF receptor-associated factor 6 (TRAF6) for degradation, 

haploinsufficiency in del(5q) MDS results in increased expression of this TLR4 signaling 

intermediate.117 Increased expression of TRAF6 drives abnormal activation of NF-κB, 

reduced blood cell counts and bone marrow failure.117 Together, the dual loss of mDia1 

and miR-146a represents an applicable model of del(5q) disease. 

First, following isolation of BM cells from double wild-type (DWT) and double 

knockout (DKO) mice, NLRP3 inflammasome formation was assessed via ASC 

oligomerization in RI-RIV erythroid progenitors by flow cytometry. The percentage of 

ASC+ cells was increased in ungated BM cells from DKO mice compared to DWT, but 

more importantly in the RI and RII erythroblast populations (Figure 36A), suggesting an 

aberrant activation of the NLRP3 inflammasome in early erythropoiesis. Accordingly, 

pyroptotic cell death was dramatically increased in the RI-RIV erythroid populations in 

the DKO mice compared to DWT controls (Figure 36B). The extent of apoptosis was not 

different between the DWT and DKO RI-RIV populations (Figure 36C). Indeed, when 

the percentage of pyroptotic versus apoptotic RI-RIV DKO cells was compared, the 

pyroptotic fraction significantly exceeded the corresponding apoptotic cell fraction 
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Figure 36. Concurrent loss of mDia1 and miR-146a results in pyroptotic cell death 
of erythroid progenitors. Data are representative of BM cells harvested from DWT 
(n=3) and DKO (n=5) mice. (A) Quantitation of inflammasome activation based on ASC 
oligomerization in ungated BM cells and RI-RIV erythroid progenitors from DWT and 
DKO mice. (B-C) The mean percentage of (B) pyroptotic and (C) apoptotic ungated BM 
cells and RI-RIV erythroid progenitors from DWT and DKO mice. (D) Comparison of the 
mean percentage of pyroptotic versus apoptotic ungated BM and RI-RIV cells isolated 
from DKO mice. (E-F) Mean (E) percentage of a-caspase-1

+
 cells and (F) a-caspase-1 

MFI in ungated BM and RI-RIV cells from DWT and DKO mice. (G-H) Mean (G) 
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percentage of a-caspase-3/7
+
 cells and (H) a-caspase-3/7 MFI in ungated BM and RI-

RIV cells from DWT and DKO mice. Error bars: SE and *p<0.05. 
 

(Figure 36D). These data suggest that DKO mice predominantly undergo a pyroptotic, 

not apoptotic, cell death. In support of these findings, the percentage of a-caspase-1+ 

cells (Figure 36E) and a-caspase-1 MFI (Figure 36F) were profoundly increased in RI 

DKO erythroblasts compared to DWT controls. While the percentage of a-caspase-3/7+ 

cells (Figure 36G) and a-caspase-3/7 MFI (Figure 36H) were additionally increased in 

the RI DKO cells, this likely occurs downstream of caspase-1 activation in accordance 

with execution of the pyroptotic program. Taken together, these data illustrate that early 

erythroid progenitors from DKO mice undergo pyroptotic cell death, with marked 

activation of caspase-1.  

ROS and β-catenin activation are significantly increased in mDia1/miR-146a 

double knockout mice. We hypothesized that dual loss of mDia1 and miR-146a would 

increase ROS generation with activation of β-catenin. Accordingly, the mean 

percentage of ROS+ cells (Figure 37A) and ROS MFI (Figure 37B) were significantly 

increased in ungated BM cells from DKO mice compared to DWT controls. ROS were 

also significantly increased across the RI-RIV erythroid populations in the DKO mice 

compared to controls (Figure 37A and 37B), indicating that deletion of these genes 

increases ROS production in the DKO mice. Moreover, nuclear localization of β-catenin 

was significantly increased in the BM of DKO mice compared to DWT controls (Figure 

37C). Therefore, these data corroborate findings of NLRP3 inflammasome-induced 

ROS generation and β-catenin activation following the loss of central 5q- genes.  
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Figure 37. ROS and β-catenin activation are significantly increased with dual loss 
of mDia1 and miR-146a. Data are representative of BM cells harvested from DWT 
(n=3) and DKO (n=5) mice. (A-B) Mean (A) percentage and (B) MFI of ROS in ungated 
BM cells and RI-RIV erythroid progenitors isolated from DWT and DKO mice. (C) 
Representative micrograph (2520x magnification) of β-catenin expression in BM cells 
from DWT and DKO mice. DAPI (blue), β-catenin (red) and merged images show 
nuclear β-catenin localization. Error bars: SE and *p<0.05. 
 

NLRP3 inflammasome inhibition restores effective erythropoiesis in del(5q) 

MDS. NLRP3 inflammasome formation and activation was markedly increased in a 

preliminary cohort of del(5q) MDS patient BM-MNC specimens (n=2) compared to 

normal controls (n=6) (Figure 38A). Importantly, short-term treatment of del(5q) BM-

MNC with 10 µM ICTA significantly reduced inflammasome activation, as well as protein 

expression of both a-caspase-1 and NLRP3 (Figure 38A). To determine if NLRP3 

inflammasome inhibition could improve hematopoiesis, colony forming capacity was 

assessed after plating del(5q) MDS BM-MNC in autologous BM plasma and increasing 
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Figure 38. NLRP3 inflammasome inhibition restores effective erythropoiesis in 
patients with del(5q) MDS. (A) Representative confocal fluorescence micrograph 
(2520x magnification) of active (a)-caspase-1 and NLRP3 expression in normal BM-
MNC (n=6) compared to del(5q) MDS BM-MNC (n=2) untreated or treated with 10 µM 
ICTA for 24 hours. DAPI (blue), a-caspase-1 (green), NLRP3 (red); merged images 
show inflammasome formation. (B) Colony forming capacity was assessed in BM-MNC 
from a del(5q) MDS specimen treated with increasing concentrations of ICTA. Error 
bars: SE, *p<0.05, **p<0.01 and ***p<0.001. 
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concentrations of ICTA. Whereas ICTA treatment had no effect on granulocyte-

macrophage (GM) CFC, ICTA treatment significantly increased erythroid CFC in a 

concentration-dependent manner (Figure 38B). These data are consistent with findings 

observed in the Rps14 haploinsufficiency model (Figure 33H and 33I), and indicate that 

inflammasome inhibition restores effective erythropoiesis in primary MDS specimens. 

 

Discussion 

 

We recently reported that central hallmarks of the non-del(5q) MDS phenotype, 

including cell death in the context of proliferation, can be attributed to aberrant activation 

of the NLRP3 inflammasome complex.199 This complex functions to drive caspase-1-

dependent pyroptotic cell death of hematopoietic stem and progenitor cells (HSPC) and 

the simultaneous activation of β-catenin, which can augment cell proliferation and 

survival. In this way, activation of β-catenin supports propagation and proliferation of the 

MDS clone. Of note, both recurrent somatic gene mutations and over-expressed DAMP 

proteins, like S100A9, trigger activation of the redox-sensitive NLRP3 inflammasome 

pathway.199 Most important, neutralization of S100A9 and inhibition of the NLRP3 

inflammasome complex was able to augment normal hematopoiesis in non-del(5q) 

MDS patients, suggesting novel strategies for therapeutic intervention.199 

To date, the ineffective erythropoiesis characteristic of del(5q) MDS, resulting in 

severe and progressive hypoplastic anemia, has been attributed to cooperative 

haploinsufficiency of  a number of genes encoded in the deleted portion of chromosome 

5q, including, but not limited to, RPS14, DIAPH1 (mDia1) and miR-146a.117,160,169,171,173 
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We hypothesized that the widespread loss of genetic material on chromosome 5q in 

del(5q) MDS would share a similar pathobiological mechanism of NLRP3 

inflammasome activation as is observed in non-del(5q) disease. Accordingly, this 

hypothesis was corroborated in two distinct murine models of del(5q) MDS, namely in 

the context of Rps14 haploinsufficiency and the dual loss of mDia1 and miR-146a, as 

well as in primary del(5q) MDS specimens. While NLRP3 inflammasome activation and 

pyroptotic cell death of hematopoietic stem and progenitor cells (HSPC) was not 

observed in these models, this was not surprising. We anticipated that defects in 

hematopoiesis would largely be restricted to the erythroid compartment, as the 5q- 

syndrome is characterized by severe macrocytic anemia. Indeed, in both models, the 

early erythroid progenitor populations, identified by CD71 and Ter119 staining as the RI 

and RII subsets, demonstrated significant NLRP3 inflammasome formation with 

caspase-1 activation. These populations predominantly underwent pyroptosis, rather 

than apoptotic cell death. Additionally, NLRP3 inflammasome activation was robustly 

increased in primary del(5q) specimens. ICTA-mediated inflammasome inhibition not 

only reduced inflammasome activation and protein expression of a-caspase-1 and 

NLRP3, but significantly improved erythroid colony forming capacity. Taken together, 

our findings suggest that the aberrant activation of NLRP3 in early erythroid progenitors 

prevents their maturation to mature, enucleated erythrocytes, effectively driving the 

anemia that is clinically manifest in MDS.  

Moreover, the two murine models demonstrated that ROS are significantly 

increased in the early RI and RII erythroblast populations. ROS, which are increased 

with somatic gene mutation and in the context of gene loss, function to activate the 
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NLRP3 inflammasome, triggering pyroptosis. Additionally, ROS can increase nuclear 

localization of β-catenin, which occurs through an NADPH oxidase (NOX)-dependent 

mechanism. In each model, ROS were dramatically reduced in the RI and RII erythroid 

progenitor populations following NOX or NLRP3 pharmacological inhibition. Active β-

catenin, which was increased in BM cells harboring genetic loss compared to WT 

controls, was significantly reduced following NOX inhibition. These data support the 

hypothesis that the del(5q) clone is propagated through activation of β-catenin, which 

occurs through a NOX-dependent mechanism.  

Murine models of del(5q) MDS have described mechanisms of pathobiology, 

including implication of p53 activation, β-catenin and TLR4 signaling. Here, our findings 

illustrate a common mechanism of pathobiology that is shared in non-del(5q) and 

del(5q) MDS, specifically activation of the NLRP3 inflammasome complex. Our data 

indicate that loss of central 5q- genes, irrespective of the gene in question, triggers 

NLRP3 activation and leads to pyroptosis and β-catenin activation. These data unify 

previous mechanisms of del(5q) pathobiology, as reduced expression of each gene is 

linked to activation of the NLRP3 inflammasome complex. Foremost, RPS14 

haploinsufficiency results in the erythroid-specific accumulation of the tumor suppressor 

protein p53, contributing to erythroid progenitor cell death and the development of 

anemia.163 These data were corroborated in an Rps14 haploinsufficent murine model of 

MDS, which additionally demonstrated that the danger associated molecular pattern 

(DAMP) proteins S100a8 and S100a9 were significantly up-regulated in 

haploinsufficient erythroid progenitors.167 S100A9 is also increased intracellularly in BM-

MNC and in the plasma of non-del(5q) MDS patients, which we demonstrated triggers 
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NLRP3 inflammasome activation, pyroptosis and nuclear localization of  β-catenin.199 

Also, ribosomal stress not only activates p53 but also the NLRP3 inflammasome.323 

Moreover, hypersensitivity to TLR4 signaling in del(5q) MDS results in aberrant 

activation of NF-κB, which is known to drive transcriptional expression of NLRP3. In this 

way, loss of mDia1 and miR-146a, which augment TLR4 signaling and responsiveness, 

would additionally increase NLRP3 expression. ROS generation resulting from genetic 

loss would serve as a secondary signal for NLRP3 activation, triggering aberrant 

inflammasome activation. Lastly, loss of casein kinase 1 alpha 1 (CSNK1A1), a model 

not studied in this manuscript, results in increased β-catenin activation in del(5q) MDS, 

as CK1α is a central regulator of the β-catenin destruction complex and thereby of β-

catenin nuclear translocation.169 Here, we not only show that β-catenin activation is 

increased in murine models of del(5q) disease other than CK1α haploinsufficiency, but 

also that activation occurs by an NOX-dependent mechanism. More specifically, 

induction of NOX-derived ROS additionally triggers β-catenin activation with concurrent 

activation of NLRP3. Together, biological events resulting from Rps14, mDia1 and miR-

146a haploinsufficiency can mechanistically be explained by NLRP3 inflammasome 

activation. 

Finally, identification of the NLRP3 inflammasome complex as a driver of the 

del(5q) MDS phenotype allows for novel avenues for therapeutic intervention. This 

pathway is likely activated irrespective of the degree of genetic loss (size of the 5q 

chromosomal deletion), and therefore represents a very attractive therapeutic target 

with translational potential.    
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Methods 

MDS patient specimens. MDS patients were consented on IRB approved 

protocols and recruited from the Eastern Cooperative Oncology Group (ECOG) E2905 

trial (NCT00843882). 

Mice. Rps14 haploinsufficient and WT BM cells, and tibias and femurs from 

mDia1/miR-146a DWT and DKO mice were generously provided by Drs. Benjamin 

Ebert and Rebekka Kramann-Schneider and Dr. Peng Ji, respectively. 

Reagents and cells. DPI was purchased from Sigma. ICTA was synthesized by 

the Chemical Biology Core Facility located at H. Lee Moffitt Cancer Center and 

Research Institute. Active caspase-1 and caspase-3/7 were detected using FAM-

FLICATM Caspase-1 (#98), FLICA-660 Caspase-1 (#9122), FLICA-660 Caspase-3 & 7 

(#9125) and SR-FLICATM Caspase-3 & 7 (#932) assay kits (ImmunoChemistry 

Technologies). NLRP3 antibodies were purchased from Abcam (ab4207) and β-catenin 

antibodies from BD Biosciences (610154). 

Immunofluorescence confocal microscopy. Following isolation, BM cells were 

stained with 30x FAM-FLICA® Caspase-1 solution for 2 hr at 37°C at a ratio of 1:30, 

washed and cytospun at 450 rpm for 5 min. Slides were fixed using BD Cytofix Fixation 

Buffer (BD Biosciences) at 37°C for 10 min, and then washed with PBS. Cells were 

permeabilized with 0.1% Triton X-100/2% BSA in PBS for 15 min at room temperature, 

washed and then blocked using 2% BSA in PBS for 30 min at room temperature. 

Following washing, cells were incubated with the appropriate primary antibody overnight 

(1:400 for NLRP3, 1:20 for β-catenin) at 4°C. After 24 hr, cells were washed with PBS 

and incubated with the appropriate secondary antibodies (1:500) for 1 hr at room 
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temperature. Slides were washed and covered with ProLong Gold Antifade Reagent 

with DAPI and a coverslip (Life Technologies).  

Cell death flow cytometry assay. Rps14 haploinsufficient and WT BM cells 

were resuspended in 1x PBS and stained with 30x FAM-FLICATM Caspase-1 and 

FLICA-660 Caspase-3 & 7 reagents at a 1:30 dilution for 30 min at 37°C. mDia1/miR-

146a double KO and DWT cells were stained following a similar protocol, but rather with 

FLICA-660 Caspase-1 and SR-FLICATM Caspase-3 & 7 reagents. Cells were washed 

with 1x PBS. For RI-RIV erythroid progenitor staining, cells were stained for surface 

receptors using CD71:BV510 (563112) and Ter119:BUV395 (563827) at a 1:20 dilution 

for 30 min at 4°C (BD Biosciences). For HSPC staining, cells were stained for surface 

receptors using lineage cocktail:V450 (561301), CD117:BUV395 (564011) and Ly-

6A/E:BV786 (563991) under the same surface receptor staining protocol 

aforementioned (BD Biosciences). Following washing, cells were resuspended in 1x 

binding buffer. For Rps14 and mDia1/miR-146a DKO experiments, cells were stained 

with annexin-V:PE (559763) and annexin-V:BV421 (563973), respectively, at a 1:20 

dilution for 15 min at room temperature (BD Biosciences). The final volume was brought 

to 400 µL with 1x binding buffer. Sample acquisitions were made on a BD LSR II flow 

cytometer using FACSDiva software. To establish compensation settings, anti-Rat and 

Anti-Hamster Ig κ/Negative Control Compensation Particles Set was used (BD 

Biosciences). Data were analyzed using FlowJo 9.7.5 software (FlowJo, LLC). 

ROS detection. ROS were detected using CellROX® Deep Red Reagent 

according to the manufacturer’s protocol (Life Technologies). 

 



www.manaraa.com

 
 

156 

ASC oligomerization. Cell pellets were permeabilized by resuspending in 1 mL 

of prewarmed BD Permeabilization Buffer III and incubating on ice for 30 min (BD 

Biosciences). Cells were washed twice with staining buffer, resuspended in 1x PBS and 

stained with rabbit anti-ASC primary antibodies at a 1:1500 dilution (Santa Cruz, sc-

22514-R). Cells were incubated for 90 min at 37°C, and then washed. Cells were 

resuspended in staining buffer, stained for surface receptors and concurrently stained 

with secondary anti-rabbit antibodies at a 1:1500 dilution for 30 min at 4°C. Sample 

acquisitions were carried out using a BD LSR II flow cytometer and FACSDiva software. 

Colony formation assays. 4 replicates of 3.5x105 BM cells/mL per mouse were 

plated in MethoCult methylcellulose medium with recombinant cytokines (Stemcell 

Technologies) supplemented with 1% v/v penicillin-streptomycin and increasing 

concentrations of ICTA, as indicated. Erythroid and CFU-GM colonies were manually 

scored fourteen days after plating using an inverted light microscope. 

Statistical analyses. All data are reported as means ± standard error. Microsoft 

Excel was used to carry out statistical analyses, specifically student’s t-test. *P values 

<0.05, **p<0.01, and ***p<0.001 were considered to be statistically significant. 
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CHAPTER 4 

NLRP3 Inflammasome-Derived ASC Specks are a Diagnostic Biomarker for 
Myelodysplastic Syndromes (MDS) 

 
Introduction 

Pyroptosis, or caspase-1-dependent cell death, is mediated by the formation of 

NLRP3 inflammasome complexes, which function as redox-sensitive, cytosolic sensors 

of danger signals.227 Upon stimulation, NLRP3 undergoes a conformational change 

fostering homotypic pyrin domain interaction with the adaptor protein ASC [apoptosis-

associated speck-like protein containing a caspase activation and recruitment domain 

(CARD)], triggering ASC nucleation and polymerization to create large, cytoplasmic 

filaments.239 Exposure of the ASCCARD on the filament surface serves as a docking 

platform for recruitment of pro-caspase-1 monomers that are activated by proximity-

induced autocatalysis to initiate proteolytic processing of pro-caspase-1. The ASC 

speck formed by ASC filament clusters creates abundant caspase-1 activation sites, 

thereby acting as an inflammasome signal amplification mechanism.239,324 

ASC specks, or aggregated clusters of ASC filaments, are approximately one 

micron in diameter in size and are released into the extracellular milieu following 

cytolysis and execution of pyroptosis.298 Released ASC specks retain catalytic activity, 

whereby they continue to recruit and mature pro-caspase-1 and its substrate IL-1β.298 

Notably, neighboring cells may phagocytose released ASC specks, which subsequently 

function as a scaffold for ASC polymerization and nucleation in the recipient cell.298 In 
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this way, ASC specks function as danger signals which propagate inflammation not only 

in the extracellular space, but additionally in cells of the surrounding stroma.298  

Myelodysplastic syndromes (MDS) are characterized by ineffective 

hematopoiesis resulting from caspase-1-dependent, pyroptotic cell death.199 All too 

frequently, the pathologic diagnosis of MDS is not straightforward owing in part to the 

vast disease heterogeneity, quality of bone marrow aspirates for cytological examination 

and reliance on morphologic assessment, which is vulnerable to observer 

discrepancies.42,92,325 Additionally, a substantial number of hematologic conditions share 

features of MDS, particularly overlap syndromes like chronic myelomonocytic leukemia 

(CMML). As such, MDS is perceived to have a high diagnostic error rate, typically 

between 30-40%, highlighting the potential value and impact of an MDS-specific 

biomarker.  

Importantly, co-localization of NLRP3 and active (a)-caspase-1 by confocal 

fluorescence microscopy confirmed selective activation of the NLRP3 inflammasome in 

MDS compared to other bone marrow malignancies.199 As ASC specks are readily 

quantified by flow cytometry,298 we hypothesized that bone marrow (BM) or peripheral 

blood (PB) plasma-derived ASC specks may serve as a biologically rational biomarker 

for the diagnosis of MDS.   

 

Results 

 

 ASC specks are significantly increased in MDS. For flow cytometric analyses, 

the gate for ASC specks was determined using the secondary only control (Figure 39A). 
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Figure 39. The percentage of plasma ASC specks increases with protein 
concentration. (A) Representative histogram of ASC speck staining, which is gated 
according to the secondary only antibody control. (B-C) Increasing BM and PB plasma 
protein concentrations were assessed for the mean percentage of (B) BM and (C) PB 
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plasma-derived ASC specks. (D-E) Representative confocal fluorescence micrograph 
(4725x and 4725x magnification, respectively) of ASC speck expression in (D) THP-1 
and (E) U937 cells that were untreated, or treated with 100 ng/mL LPS, 5 mM ATP and 
5 µM nigericin or 5 µg/mL rhS100A9 for 24 hours. DAPI (blue), ASC (green) and 
merged images show ASC specks. 
 

The percentage of BM and PB plasma-derived ASC specks increased linearly with 

protein concentration, confirming assay specificity (Figure 39B and 39C). Next, the 

ability of the ASC antibody employed to detect ASC specks was further validated using 

confocal fluorescence microscopy in THP-1 parental, NLRP3 knockout (KO) THP-1 and 

U937 cells. THP-1, NLRP3 KO and U937 cells were treated with 100 ng/mL LPS, 5 mM 

ATP and 5 µM nigericin or 5 µg/mL recombinant human S100A9 (rhS100A9) for 24 

hours, which is known to induce NLRP3 inflammasome activation.199 In all three cell 

lines, LPS/ATP/nigericin and rhS100A9 treatment induced expression of ASC as a 

result of priming (Figure 39D and 39E). Whereas the formation of ASC specks, 

evidenced by the detection of punctate ASC staining, was induced in THP-1 parental 

and U937 cells, specks did not form in NLRP3 KO cells, confirming NLRP3-dependence 

(Figure 39D and 39E).  

To further assess ASC speck expression, we measured the percentage of ASC 

specks in a preliminary cohort of normal donors (n=3) and MDS patients (n=6). ASC 

specks were significantly increased (p=0.015) in MDS BM plasma compared to normal 

donors (Figure 40A), prompting validation of speck expression by confocal microscopy. 

Cellular expression of ASC specks in MDS compared to healthy donors confirmed that 

MDS BM-mononuclear cells (BM-MNC) display both increased ASC protein expression, 

consistent with inflammasome priming, and greater punctate staining, confirming ASC 

speck formation (Figure 40B). Furthermore, to assess ASC speck expression in MDS, 



www.manaraa.com

 
 

161 

 

Figure 40. ASC specks are significantly increased in MDS and may have 
prognostic value. (A) The percentage of ASC specks in BM plasma samples is 
significantly greater in MDS specimens (n=6) than normal donors (n=3) (p=0.015). (B) 
Representative confocal fluorescence micrograph (2520x magnification) of ASC speck 
expression in BM-MNC from normal donors and lower-risk MDS patients. DAPI (blue), 
ASC (green), merged images and white arrows show and point to ASC specks, 
respectively. (C) The percentage of ASC specks in matched PB and BM plasma 
samples (n=38) is significantly greater in PB plasma (p=3.5x10

-4
). (D) The percentage of 

PB plasma-derived ASC specks was investigated in normal, healthy donors (n=40) and 
patients of lower-risk (n=180), higher-risk (n=69) and del(5q) (n=24) MDS. Error bars: 
SE, *p<0.05 and ***p<0.001.  
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we first measured the percentage of ASC specks in the BM of matched PB and BM 

plasma samples (n=38). The percentage of PB plasma-derived ASC specks in MDS 

significantly exceeded the percentage of BM plasma-derived specks (p=3.5x10-4) 

(Figure 40C). Given that PB samples are more readily accessible, and if sensitive and 

specific, could serve as a diagnostic screen determining the need for a BM aspirate and 

biopsy, further investigation of PB plasma was prioritized. The percentage of PB 

plasma-derived ASC specks was significantly increased in lower-risk (n=180) and 

higher-risk (n=69) MDS compared to normal, healthy donors (n=40, p=2.8x10-32 and 

2.4x10-3, respectively), whereas no significant difference was observed between normal 

donors and patients with deletion 5q [del(5q)] MDS (n=24) (Figure 40D). Given that 

del(5q) MDS is characterized by erythroid hypoplasia arising from p53 activation, these 

findings are not surprising, and perhaps suggest that molecular genetic testing on PB 

may be complimentary, and further enhance specificity. Importantly, the percentage of 

ASC specks was significantly increased in lower-risk compared to higher-risk MDS 

(p=5.6x10-14) (Figure 40D), which is consistent with our previous report illustrating that 

lower-risk MDS, but not higher-risk disease, is characterized by excessive NLRP3 

inflammasome activation and pyroptotic cell death.199 Together, these data suggest that 

PB plasma-derived ASC specks may have diagnostic utility and serve as a surrogate 

marker reflecting the extent of pyroptosis in hematopoietic cells and prognostic risk.  

 The percentage of PB plasma-derived ASC specks is a diagnostic 

biomarker for MDS. To determine the utility of PB plasma-derived ASC specks as a 

specific MDS diagnostic biomarker, ASC speck percentage was determined in plasma 

from patients with varied hematologic malignancies. As hyperglycemia stimulates 
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NLRP3 inflammasome assembly and activation, we measured plasma glucose levels by 

colorimetric assay to adjust for this potentially confounding variable and to optimize the 

assay. The data provided in Table 6 summarize the number and types of samples 

investigated, the mean percentage of ASC specks normalized to plasma glucose 

concentration and corrected for volume, and the statistical significance comparison of 

each respective sample group compared to normal, healthy donors (n=40) and MDS 

patients (n=294). The glucose-adjusted speck percentage in lower-risk MDS remained 

significantly elevated versus normal donors (p=3.7x10-6) (Figure 41). Although the 

corrected percentage of ASC specks was significantly greater in higher-risk MDS 

compared to normal donors (p=6.7x10-6), the glucose-adjusted speck percentage in 

lower-risk patients significantly exceeded the percentage in higher-risk samples 

(p=7.6x10-5). Compared to normal, healthy donors (n=40), ASC specks were 

significantly greater in patients with LR-MDS (p=3.7x10-6), HR-MDS (p=6.7x10-6), 

secondary acute myeloid leukemia (AML, p=9.9x10-3), essential thrombocythemia (ET, 

p=0.04), multiple myeloma (MM, p=0.01) and large granular lymphocytic leukemia (LGL, 

p=0.02) (Figure 41). Importantly, MDS samples displayed significantly greater corrected 

percentage of PB plasma-derived ASC specks compared to each hematologic 

malignancy investigated, including de novo AML (p=6.5x10-4), secondary AML 

(p=4.3x10-4), chronic myelomonocytic leukemia (CMML, p=1.6x10-6), chronic 

lymphocytic leukemia (CLL, p=1.6x10-6), chronic myeloid leukemia (CML, p=2.1x10-6), 

acute lymphoblastic leukemia (ALL, p=2.1x10-6), ET (p=1.4x10-4), polycythemia vera 

(PV, p=7.9x10-5), MM (p=3.9x10-5) and LGL (p=5.1x10-5) (Figure 41).  
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Table 6. Mean percentage of PB plasma-derived ASC speck values across sample 
cohorts. The mean percentage of ASC specks is normalized to plasma glucose 
concentration and corrected for volume. Statistical significance was determined by 
comparing normal, healthy donors (n=40) and MDS specimens (n=294) to each 
respective sample group. (ns, not significant)  
 

 

 

Notably, the NLRP3 inflammasome is activated in adipose-based macrophages 

in type 2 diabetes (T2D).326 In a cohort of T2D patients without cancer, the glucose-

adjusted speck percentage was significantly lower than levels detected in MDS 

specimens (p=1.8x10-6) (Figure 41). Although ASC specks were about 2-fold greater in 

T2D patients compared to normal, healthy donors, the change was not significant. 

Therefore, although NLRP3 inflammasome assembly may not be MDS-specific, these 

data together indicate that NLRP3 inflammasome-driven pyroptosis and release of ASC 
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Figure 41. The percentage of glucose-adjusted, PB plasma-derived ASC specks is 
specific for MDS. Glucose-adjusted ASC speck percentage in normal donors (n=40), 
lower-risk MDS (n=180), higher-risk MDS (n=69), all MDS (n=249), del(5q) MDS (n=24), 
de novo acute myeloid leukemia (AML, n=16), secondary AML (n=26), chronic 
myelomonocytic leukemia (CMML, n=20), chronic lymphocytic leukemia (CLL, n=50), 
chronic myeloid leukemia (CML, n=52), acute lymphoblastic leukemia (ALL, n=7), 
essential thrombocythemia (ET, n=20), polycythemia vera (PV, n=20), multiple myeloma 
(myeloma, n=20), large granular lymphocytic leukemia (LGL, n=19) and type 2 diabetes 
(T2D, n=25). A cutoff of 0.039 was selected to minimize total misclassification error. At 
this cutoff point, the biomarker achieves 95% sensitivity and 82% specificity in 
classifying MDS from normal donors. In an external validation cohort (MDS, n=196), the 
biomarker achieved 96% sensitivity at the 0.039 cutoff point. Error bars: SE, **p<0.01 
and ***p<0.001. 
 

specks is specific for MDS in steady state, in the absence of infection. Moreover, these 

findings suggest that the corrected percentage of PB plasma-derived ASC specks may 

be a useful biomarker for the diagnosis of MDS. 
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Furthermore, statistical analyses were performed to determine a rational cutoff 

point for the diagnostic biomarker. Specifically, sensitivity, specificity, positive predictive 

value (PPV) and negative predictive value (NPV) were used to evaluate accuracy. A 

cutoff of 0.039 was selected to minimize total misclassification error, namely the sum of 

the false positive and false negative rate. With this cutoff, the PPV and NPV are 96%, 

and 76%, respectively, and the biomarker achieves 95% sensitivity and 82% specificity 

in classifying MDS from normal donors, other BM malignancies and T2D. These 

parameters were validated in an independent dataset (n=196) in which the biomarker 

achieved 96% sensitivity at the 0.039 cutoff point, confirming the high sensitivity of the 

biomarker (Figure 41).  

 Specks may serve as a biomarker index of ineffective hematopoiesis. We 

hypothesized that ASC specks reflect the magnitude of medullary pyroptosis and 

therefore may additionally serve as a PB biomarker of response to treatment in lower-

risk MDS patients. To this end, we interrogated the glucose-adjusted percentage of 

ASC specks in the PB plasma of lenalidomide-treated, responding and non-responding 

patients at the time of screening and week 16. Among responders, 4 and 8 patients had 

del(5q) and non-del(5q) MDS, respectively. The corrected percentage of ASC specks 

decreased a mean of 63% (range 60-69%) at week 16 in the del(5q) patients, indicative 

of a significant reduction (p=7.2x10-5) (Figure 42A). Additionally, ASC specks decreased 

a mean of 21% (range 3-77%) at week 16 in the non-del(5q) responders (Figure 42B), 

findings that are consistent with prior clinical studies showing that suppression of the 

del(5q) clone with lenalidomide treatment more robustly restores effective erythropoiesis 

as measured by maximum rise in hemoglobin and response duration.61,159,327  
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Figure 42. PB plasma-derived ASC specks are a response biomarker to 
lenalidomide treatment. (A-B) Mean corrected ASC speck percentage at the time of 
screening and week 16 in lenalidomide-treated, (A) del(5q) MDS (n=4) responding 
patients and (B) non-del(5q) MDS (n=8) responding patients. (C) Mean corrected ASC 
speck percentage at the time of screening and week 16 in lenalidomide-treated, non-
del(5q) MDS (n=24) non-responding patients. Error bars: SE, ***p<0.01.  
 

Conversely, the percentage of specks increased 2.4-fold at week 16 in non-responding 

patients (Figure 42C). Importantly, these findings were corroborated in two independent 

datasets of lenalidomide-treated, lower-risk MDS patients (Figure 43). Specifically, the 

corrected percentage of ASC specks decreased in responding patients and increased in 

non-responders over the course of treatment. The corrected percentage of ASC specks 

did not predict for treatment response to erythropoietin stimulating agents (ESAs) in LR-
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MDS patients or to hypomethylating agents (HMAs) in HR-MDS patients (Figure 44). 

These data suggest that specks may serve as a biomarker index of ineffective 

hematopoiesis and perhaps of early response to immunomodulatory drug therapy. 

 

Discussion 

 

Recently, we reported that NLRP3 inflammasome-driven pyroptotic cell death is 

a hallmark of lower-risk MDS, driven by somatic gene mutations and danger associated 

molecular pattern (DAMP) signals, such as S100A9.199 Pyroptosis culminates in 

cytolysis, with release of pro-inflammatory cytokines, DAMP signals and ASC specks, 

which together exacerbate inflammation in bystander cells. ASC specks, themselves an 

extracellular DAMP signal, are only one micron in diameter but retain catalytic activity, 

evidenced by their ability to catalyze maturation of pro-caspase-1 and pro-IL-1β within 

the microenvironment.298 Since specks are only secreted upon cytolysis, they function 

as a surrogate marker of the magnitude of hematopoietic pyroptotic cell death. Given 

that pyroptosis is a hallmark of lower-risk MDS, we hypothesized that ASC specks may 

be a biologically rationale biomarker for the diagnosis of MDS.  

To this end, we optimized a flow cytometry assay for the detection of extracellular 

ASC specks in BM and PB plasma. To start, the percentage of ASC specks increased 

linearly in both BM and PB plasma with increasing concentrations of protein. The ability 

of the primary ASC antibody employed to detect ASC specks was corroborated by 

confocal fluorescence microscopy, whereby expression of ASC and specks increased in 

THP-1 and U937 cells treated with either rhS100A9 or LPS/ATP/nigericin. Notably, the 
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Figure 43. PB plasma-derived ASC specks are a response biomarker to 
lenalidomide treatment in two independent data sets. (A-B) Mean corrected ASC 
speck percentage pre- and post-lenalidomide treatment in MDS (A) responding (n=3) 
and (B) non-responding (n=7) patients from the University of Florence. (C-D) Mean 
corrected ASC speck percentage pre- and post-lenalidomide treatment in MDS (C) 
responding (n=28) and (D) non-responding (n=42) patients from the Groupe 
Francophone des Myélodysplasies (GFM) cooperative group.328 Error bars: SE.  
 

formation of ASC specks is NLRP3-dependent, as specks failed to nucleate in the 

context of NLRP3 deficiency.   

Furthermore, comparison of matched PB and BM plasma samples from MDS 

patients illustrated that the percentage of ASC specks is significantly greater in the PB 

plasma. Notably, ASC specks have a prion-like phenotype, whereby they are resistant 
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Figure 44. PB plasma-derived ASC specks remain unchanged after response to 
ESA or HMA therapy. (A-B) Mean corrected ASC speck percentage pre- and post-ESA 
treatment in LR-MDS (A) responding (n=10) and (B) non-responding (n=18) patients. 
(C-D) Mean corrected ASC speck percentage pre- and post-HMA treatment in HR-MDS 
(C) responding (n=15) and (D) non-responding (n=3) patients. Error bars: SE.   
 

to proteolytic degradation and persist long after cell death.298 It is possible that while 

specks may be cleared quickly in the BM by resident macrophages, they persist within 

the PB because of poorer clearance and prion-like proteolytic resistance. Indeed, 

mouse models show that specks remain in tissues for up to 96 hours following injection, 

indicating that inflammasome-initiated pyroptosis may have prolonged effects on the 

microenvironment.298 This would reconcile the observation of greater expression of 
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specks within MDS PB plasma compared to BM plasma. In order to optimize the 

diagnostic assay, plasma glucose levels were measured by colorimetric assay to adjust 

for the confounding effects of hyperglycemia, which is a known stimulus of NLRP3 

inflammasome activation. Consequently, the biomarker was defined as the percentage 

of ASC specks normalized to plasma glucose concentration corrected for volume. The 

glucose-adjusted speck percentage was significantly greater in both lower- and higher-

risk MDS compared to normal donors. This increase in speck expression in MDS 

compared to normal donors was confirmed by confocal microscopy, whereby MDS BM-

MNC demonstrated increased number of ASC specks. Importantly, speck expression 

was greater in lower-risk versus higher-risk MDS, suggesting possible utility for 

prognostic discrimination that might be enhanced when coupled with PB molecular 

genetic studies. Not surprisingly, expression of ASC specks did not differ between 

normal donors and patients with del(5q) MDS, which is characterized by erythroid 

hypoplasia (Chapter 3). As such, release of ASC specks would be expected to be lower 

in del(5q) MDS.  

Moreover, investigation of ASC speck expression in a panel of other hematologic 

malignancies, including other myeloid and lymphoid leukemias, myeloproliferative 

neoplasms and overlap syndromes, like CMML, illustrated that specks are MDS-

specific. Using statistical approaches, a cutoff point of 0.039 was identified to maximize 

sensitivity and specificity of the biomarker, which were 95% and 82%, respectively. 

Importantly, the biomarker achieved 96% sensitivity at the 0.039 cutoff point in an 

independent, external dataset, confirming high biomarker sensitivity. ASC specks 

additionally have utility as a measurement of the magnitude of pyroptotic cell death and 
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therefore response to treatment with lenalidomide. In responding patients, the glucose-

corrected percentage of ASC specks was significantly reduced post-treatment whereas 

specks remained unchanged or even increased in non-responders. These findings were 

corroborated in two independent datasets. Changes in the corrected percentage of ASC 

specks, however, was not observed upon treatment response to ESA or HMA therapy in 

LR- and HR-MDS, respectively, suggesting utility as a response biomarker may be 

limited to immunomodulating agent therapy. 

 Lastly, ASC specks are readily quantified by flow cytometry. Using BM 

morphology alone, the error rate of MDS diagnosis is high, approximately 30-40%, 

which can be attributed to a number of confounding variables.325,329 Additionally, 

diagnoses rely heavily of morphological assessments of dysplasia, which are known to 

be vulnerable to observer error. The identification of a diagnostic assay that is 

independent of morphology is invaluable from a diagnostic perspective. Therefore, PB 

plasma-derived ASC specks represent the first diagnostic biomarker for MDS and may 

additionally be useful in monitoring incipient treatment responses in lower-risk patients.  

 

Methods 

 

 Patient specimens. Normal plasma samples were obtained from peripheral 

blood samples purchased through Florida Blood Services. CMML plasma samples were 

generously provided by Dr. Eric Padron, and CML and CLL samples from Dr. Javier 

Pinilla-Ibarz. Plasma samples from other hematologic malignancies and type 2 diabetes 

patients were obtained from consented patients on a protocol approved by the 
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University of South Florida Institutional Review Board (Pro00026210). MDS patient 

plasma samples and BM-MNC were obtained from patients consented on the Eastern 

Cooperative Oncology Group (ECOG) E2905 trial (NCT00843882), and additionally 

provided by Drs. Valeria Santini and Erico Masala of University of Florence and Pierre 

Fenaux and Olivier Kosmider of the Groupe Francophone des Myélodysplasies (GFM) 

cooperative group. MDS patients were stratified according to the International 

Prognostic Scoring System (IPSS). Patients of low and intermediate-1 risk and 

intermediate-2 and high risk were considered to have lower-risk and higher-risk disease, 

respectively. 

Reagents and cells. THP-1 and U937 cells were acquired from ATCC and 

maintained in RPMI-1640 supplemented with 10% FBS and 1% penicillin/streptomycin 

solution.  Lipopolysaccharide (LPS), ATP and nigericin were purchased from Sigma-

Aldrich. Normal BM cells were purchased from AllCells, LLC.   

 ASC speck staining. Plasma protein was quantified using BCA Protein Assay 

Kit (ThermoFisher Scientific). 300 µg of plasma from each donor was aliquoted into flow 

tubes and stained with anti-ASC primary antibodies (sc-22514-R, Santa Cruz) at a 

1:1500 dilution for 1 hour at 37°C, followed by secondary antibody staining at a 1:1500 

dilution for 30 minutes at 37°C. Samples were acquired using a BD FACSCalibur flow 

cytometer and threshold settings for forward scatter (FSC) and side scatter (SSC) were 

set to zero to allow for speck detection. Data were analyzed using FlowJo 9.7.5 

software (FlowJo, LLC). 

 Immunofluorescence confocal microscopy. For cell line studies, THP-1 and 

U937 cells were plated and treated for 24 hours at 37°C concurrently with 100 ng/mL 
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LPS and 5 mM ATP or 5 µg/mL rhS100A9. After that, 5 µM nigericin was added to the 

LPS/ATP-treated cells for 1 hour at 37°C. Subsequently, cells were collected from all 

treatment groups and washed. Cytospins of cell lines and normal and MDS BM-MNC 

were generated by centrifugation for 5 min at 450 rpm, and fixed using BD Cytofix 

Fixation Buffer (BD Biosciences) for 10 min at 37°C. Slides were washed with 1x PBS, 

permeabilized with 0.1% Triton X-100/2% BSA in 1x PBS for 15 min at room 

temperature. Slides were washed again and blocked for 30 min at room temperature 

using 2% BSA in 1x PBS. After washing, slides were incubated with anti-ASC (sc-

22514-R, Santa Cruz) primary antibodies at a 1:20 dilution at 4°C overnight. Slides were 

washed again in 1x PBS and incubated with goat anti-rabbit Alexa Fluor 488 secondary 

antibodies at a 1:250 dilution for 1 hour at room temperature. Slides were washed and 

ProLong Gold Antifade Reagent with DAPI (Life Technologies) and a coverslip were 

added. Images were taken using a Leica TCS SP8 AOBS Laser Scanning Confocal 

microscope (Leica Microsystems).  

  Enzyme-linked immunosorbent assays (ELISA). Plasma glucose 

concentration was measured using Glucose Colorimetric Assay Kit according to the 

manufacturer’s protocol (#10009582, Cayman Chemical). 

 Statistical analyses. Data are expressed as means ± standard error. 

Measurements of statistical significance using student’s t-test were made in Microsoft 

Excel. *P values <0.05, **p<0.01, and ***p<0.001 were considered to be statistically 

significant. Additional statistical analyses were carried out by the study statistician. The 

sample numbers used provided greater than 90% power to detect significant differences 

between diseases. The diagnostic biomarker was defined as the percentage of PB 
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plasma-derived ASC specks adjusted for glucose. Sensitivity, specificity, positive 

predictive value (PPV) and negative predictive value (NPV) were used to evaluate 

classification accuracy of the biomarker at varied cutoff points.  
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CHAPTER 5 

Discussion 

 

Implications 

 

MDS-Specific Implications. Over the next few decades, the incidence of MDS 

and other age-related disorders is projected to dramatically increase, owing to the 

greying of populations in developed countries.47 Irrespective of prognostic risk, the only 

curative treatment for MDS is allogeneic stem cell transplantation (alloSCT).48,49 

Unfortunately, most patients are not eligible for alloSCT given their advanced age and 

the frequent presence of comorbid conditions. While three therapies have received 

FDA-approved designation for MDS, no novel therapies have been approved in over a 

decade. As patients become refractory to current treatment standards, care largely 

becomes empirical. For these reasons, there is a heightened necessity for novel 

therapeutic approaches that can directly and specifically target pathways central to 

disease pathobiology.  

To date, despite the presence of vast genetic heterogeneity, lower-risk MDS 

pathobiology has been characterized by the proliferation of HSPC counter-balanced by 

programmed cell death mediated by pro-inflammatory cytokines.196,288 More specifically, 

cell death was attributed to apoptosis, a non-inflammatory mode of cell death. Despite 

this, the literature strongly supports the role of innate immune activation in the 
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pathobiology of MDS, evidenced by pro-inflammatory cytokine, chemokine and growth 

factor profiles, PRR expression and signaling, MDSC and the inflamed BM 

microenvironment.93,122,140 Indeed, a history of infection and autoimmune disease has 

been linked to MDS predisposition, suggesting that immune dysfunction precedes MDS 

development.25 These findings support an apparent cell death paradox in MDS, 

whereby a non-inflammatory mechanism of cell death, namely apoptosis, has been 

implicated in the context of widespread inflammation. Notably, a pro-inflammatory cell 

death mechanism called pyroptosis, which is dependent on caspase-1 activation, was 

first characterized in microbial infection.212 Pyroptosis is mediated by the formation of 

inflammasome complexes, or cytosolic, heptameric oligomers of NOD-like receptors, or 

NLRs, that function to detect both host- and microorganism-derived danger signals. 

Among the five inflammasome-forming proteins, NLRP3 is the best characterized.  

Here, we demonstrate that key hallmarks of MDS pathobiology can be attributed 

to aberrant activation of the NLRP3 inflammasome, which directs pyroptotic cell death, 

pro-inflammatory cytokine elaboration, cation influx and propagation of the MDS clone 

through β-catenin activation. Pyroptosis better accounts for characteristic features of 

MDS that have historically been ascribed to apoptosis, including inflammatory cell death 

in the context of HSPC proliferation. Importantly, NLRP3 inflammasome activation 

occurs irrespective of molecular phenotype, elucidating for the first time, a mechanism 

by which diverse genetic heterogeneity converges to yield a shared MDS phenotype. 

These data also provide a common circuit responsible for MDS pathobiology, as NLRP3 

inflammasome-initiated pyroptosis and β-catenin activation are hallmarks of both non-

del(5q) and del(5q) disease. As such, the causal role of NLRP3 inflammasome 
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activation in the pathobiology of MDS identifies biologically rational and novel avenues 

for therapeutic intervention, including neutralization of S100A9 and inhibition of the 

NLRP3 inflammasome. Given that these approaches directly target underlying aspects 

of disease biology, it is likely that they would have significant clinical benefit across 

MDS subtypes, and if applied early in the diagnosis of lower-risk MDS, could potentially 

be disease-modifying. In the context of del(5q) MDS, the therapeutic potential of NLRP3 

inflammasome inhibition was demonstrated in this manuscript, and occurs by a 

mechanism distinct from that of lenalidomide, the standard of care for this disease 

subset. Accordingly, NLRP3 inflammasome inhibition may represent an innovative 

approach for treating del(5q) patients that have developed resistance to lenalidomide.  

Furthermore, we have described the first diagnostic biomarker for MDS, namely 

the glucose-adjusted percentage of PB plasma-derived ASC specks. Given the 

magnitude of pyroptosis in lower-risk MDS, ASC specks provide an index of the extent 

of pyroptotic cell death and as such, serve as a biologically rational biomarker for the 

diagnosis of MDS. The biomarker is both sensitive and specific, and can accurately 

distinguish MDS from normal donors, various other BM malignancies and T2D. Since 

the biomarker is measured independent of cytological and morphological examination, it 

can be employed to complement current diagnostic methods and reduce diagnostic 

error, which is reported in approximately 30-40% of cases. The biomarker may also 

predict early treatment response to immunomodulatory drug therapy in lower-risk 

patients, illustrating additional potential clinical utility.  

Implications Related to Other Inflammatory Conditions and Diseases of 

Major Health Concern. Activation of the NLRP3 inflammasome is tightly regulated, 
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evidenced by a two-step mechanism of activation and by the number of endogenous 

negative regulators that function to dampen inflammasome-driven responses. 

Deregulation of the inflammasome complex has been implicated in a vast number of 

diseases, including heritable and acquired inflammatory conditions and other 

autoimmune diseases that have an inflammatory pathobiology.330,331 Therefore, 

increased understanding of the nuances governing NLRP3 inflammasome signaling and 

regulation could lead to novel therapeutic agents that abrogate pathway activation. To 

this end, our findings with respect to the role of NLRP3 inflammasome activation in 

MDS pathobiology, as well as novel strategies aimed at inflammasome inhibition, can 

widely impact healthcare and effectively generate new treatment approaches for a 

number of malignancies, and metabolic and immune disorders. These conditions are 

generally summarized in Figure 45.     

Inflammasomopathies. Appropriately named, inflammasomopathies represent 

the group of disorders resulting from autosomal dominant mutations in NLRP3, which 

render the inflammasome constitutively active.254,332 Of the 90 disease-associated 

mutations that have been reported, the majority reside within the nucleotide binding 

domain (NBD) of NLRP3. It has been hypothesized that these mutations disrupt binding 

ability of an unknown negative regulator or possibly the intrinsic ability of NLRP3 to self-

regulate.254 Interestingly, while no mutations in NLRP3 have been described in MDS to 

date, NLRP3 single nucleotide polymorphisms (SNPs) are significantly enriched in 

patients with a history of autoimmune disorders.333 Further, prior to nomenclature 

changes, NLRP3 was previously referred to a cryopyrin. As such, these disorders are 

also referred to as cryopyrin-associated periodic syndromes (CAPS), or 
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Figure 45. NLRP3 inflammasome activation is a pathobiological driver of many 
inflammatory conditions and diseases of major health concern. Aberrant activation 
of the NLRP3 inflammasome in the brain is a pathobiologic driver of Alzheimer’s 
disease, Parkinson’s disease and multiple sclerosis; in the lungs: fibrosing disorders; in 
the heart: cardiovascular disease; in the pancreas: type 2 diabetes mellitus; in the bone 
marrow and joints: MDS, gout and pseudogout, respectively. NLRP3 inflammasome 
activation also contributes pathobiologically to inflammasomopathies and ischemia-
reperfusion injury.  
 

cryopyrinopathies. The inflammasomopathies share a spectrum of clinical phenotypes, 

ranging from less to most severe, specifically familial cold autoinflammatory syndrome 

(FCAS), Muckle-Wells syndrome (MWS) and chronic infantile neurological cutaneous 

articular syndrome (CINCA), respectively.254  
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Notably, disease severity directly correlates with IL-1β production, and as such, 

therapeutic interventions have been aimed at IL-1 receptor inhibition, IL-1β 

neutralization and caspase-1 inhibition. For example, anakinra is an IL-1 receptor 

antagonist that significantly reduces both IL-1β transcriptional priming and secretion of 

the mature cytokine.334 Although it is not FDA approved for the treatment of 

inflammasomopathies, anakinra is commonly used as an off-label treatment in these 

disorders.335 Because of its short half-life, patients require daily injections of anakinra 

which results in significant pain and discomfort. Of note, anakinra is FDA approved for 

the treatment of rheumatoid arthritis and is being investigated in other indications, 

including renal disease and dermatitis. Furthermore, neutralization of IL-1β is achieved 

by rilonacept, a chimeric protein generated by the fusion of the IL-1 receptor binding 

region to the Fc portion of human IgG1.
336

 Rilonacept received FDA approval in 2008 for 

inflammasomopathy treatment. The benefit of rilonacept over anakinra therapy, namely 

weekly injections versus daily, is offset by the fact that rilonacept is significantly greater 

in cost than anakinra.335 The last of the IL-1β neutralization strategies is canakinumab, a 

human IL-1β monoclonal antibody.335 With a significantly longer half-life, patients 

receive only one injection every eight weeks.335 Canakinumab received FDA approval 

for inflammasomopathies in 2009, and has since been explored in other indications, 

including rheumatoid arthritis, gout and type 2 diabetes mellitus. Finally, VX-765 is a 

selective inhibitor of caspase-1, which significantly reduces secretion of both IL-1β and 

IL-18.337 Despite this, VX-765 has yet to be tested clinically for the treatment of 

inflammasomopathies. Taken together, while these therapies have had success, with 

some even gaining FDA approval, patients still acquire resistance, indicating the need 
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for novel, more effective treatment approaches. Such efforts have been aimed further 

upstream at the level of the NLRP3 inflammasome, as no NLRP3-specific inhibitors 

exist to date.  

Type 2 diabetes mellitus. Type 2 diabetes mellitus (T2D) represents a major, 

global health concern and is generally characterized by peripheral insulin resistance 

arising from the impaired ability of pancreatic beta cells to produce and secrete 

insulin.332 The literature strongly supports an aberrant role of innate immune activation 

in T2D. More specifically, IL-1β and NLRP3 inflammasome activation have been 

identified as pathobiological drivers of the disease. Notably, the incidence of T2D is 

increased among patients with MDS,8 suggesting that increased understanding of 

NLPR3 inflammasome activation in MDS can increase understanding of T2D biology, 

and that novel therapeutic approaches can be utilized in both diseases. 

To start, hyperglycemia induces innate immune signaling within pancreatic islets, 

up-regulating TLR2 and TLR4 gene and protein expression, NF-κB activation, and both 

MyD88-dependent and -independent signaling pathways.338 This is accompanied by 

glucose-driven increases in IL-1β transcriptional priming and secretion, caspase-1 

activity and pancreatic beta cell death.339,340 Indeed, IL-1β functions in a positive 

feedback loop, whereby hyperglycemia induces maturation of IL-1β by beta cells, which 

upon secretion triggers cell death of islet cells and increased glucose concentrations.332 

These effects are mitigated by the in vitro treatment of islet cells with an IL-1 receptor 

antagonist.340 In a randomized clinical trial, IL-1 receptor antagonism significantly 

improved glycemic control and beta cell insulin secretory function, illustrating the 

importance of IL-1β in disease pathobiology.341 However, insulin sensitivity was not 
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changed among the control and treatment arms, indicating the need for more effective 

treatment approaches. Similar findings were observed in a murine model of T2D and in 

Il1b knockout mice.342,343 

Importantly, increased NLRP3 inflammasome activation in pancreatic beta cells 

and fat-based macrophages, active caspase-1 and IL-1β correlate not only with 

increased risk of developing diabetes, but also disease severity.331 Nlrp3 knockout mice 

display insulin sensitivity, enhanced insulin signaling and significant reductions in pro-

inflammatory cytokines,344 implicating NLRP3 inflammasome activation in disease 

pathobiology. Pancreatic beta cells basally express NLRP3, ASC, caspase-1 and IL-1β, 

but levels are profoundly increased upon high glucose exposure.261 Notably, 

hyperglycemia also induces islet cell expression of thioredoxin-interacting protein 

(TXNIP),339 a redox protein known to directly bind to NLRP3, inducing a conformational 

change that results in inflammasome assembly and activation.261 Txnip-/- mice evidence 

reduced inflammasome activation, IL-1β secretion and cell death.261 Similarly, siRNA-

directed silencing of TXNIP in human adipocytes significantly reduced levels of IL-1β 

and mitigated the negative effects of hyperglycemia.339 Mechanistically, TXNIP directly 

and indirectly suppresses glucose uptake while additionally inducing NLRP3 

inflammasome activation, leading to IL-1β generation and cell death of insulin-producing 

beta cells.330 TXNIP serves as a key regulator of glucose homeostasis by directing 

degradation of the plasma membrane glucose transporter GLUT1 through 

internalization of clathrin-coated pits, whereas nuclear-localized TXNIP suppresses 

GLUT1 gene transcription.345 As such, therapies aimed at NLRP3 inflammasome 

inhibition would likely impart significant clinical benefit to patients with T2D. 
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Cardiovascular disease. Cardiovascular disease is the leading cause of death 

worldwide. The literature strongly supports a causal role for inflammation, ROS and 

NLRP3 inflammasome activation in the pathobiology of various cardiovascular 

diseases, including hypertension and atherosclerosis. Intronic, tandem repeat 

polymorphisms in NLRP3 are associated with increased systolic blood pressure and 

increased risk of developing hypertension compared to individuals with wild-type 

NLRP3.346 Interestingly, hypertension positively correlates with the development of 

T2D,254 implicating an aberrant role of NLRP3 in both diseases. In a rat model of 

hypertension, aortic cells from hypertensive animals significantly up-regulated NADPH 

oxidase (NOX) activity compared to littermate controls.347 NOX-derived ROS contribute 

to abnormal vascular structure and functionality, perpetuating disease severity.348  

Nearly three decades ago, it was reported that inflammation is a central mediator 

of atherosclerosis, and today, inflammation is regarded as a causal factor in the 

formation and progression of atherosclerotic plaques.254 During atherosclerosis, 

cholesterol monohydrate crystals accumulate within lysosomes of macrophages 

following phagocytosis, as well as within lesions in the extracellular space.349 The 

accumulation of cholesterol crystals leads to hardening of the arterial walls as well as 

narrowing of arterial vessels, which together increase risk of heart attack and stroke.330 

Until recently, the cause of chronic inflammation in the pathobiology of atherosclerosis 

was unknown but has since been attributed to the NLRP3 inflammasome. As plaques 

develop, monocytes are recruited to the site of the lesion whereby they differentiate into 

macrophages.350 The macrophages phagocytose the cholesterol crystals that are 

abundant in the lesions, resulting in lysosomal damage.350,351 Subsequently, through a 
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cathepsin B-dependent mechanism, the NLRP3 inflammasome becomes activated, 

generating and secreting mature IL-1β in a caspase-1-dependent manner.350,351 In this 

way, the cholesterol crystals function as DAMPs triggering aberrant activation of the 

inflammasome complex. Notably, in a transplant model of disease, mice deficient in 

Nlrp3 and Il1 had reduced inflammation, smaller lesions and were more resistant to the 

development of atherosclerosis.351 Similarly, siRNA-mediated silencing of NLRP3 

mitigated release of IL-1β in response to cholesterol crystals.350 Perhaps not 

surprisingly, levels of IL-1β correlate with disease severity.352 These data together 

indicate a central role for inflammasome activation in disease pathobiology, and suggest 

that inflammasome inhibitors may have therapeutic efficacy in cardiovascular disease.  

 Multiple sclerosis. Although the pathobiology of multiple sclerosis (MS) is 

complex and still under investigation, the literature supports an aberrant role for NLRP3 

inflammasome activation. Generally, MS is a devastating autoimmune disease 

characterized by demyelination resulting from myelin-specific CD4+ T cells that 

penetrate the central nervous system (CNS) to injure oligodendrocytes.330 

Phenotypically, the CNS loses significant functionality, resulting in widespread 

challenges that are physical, mental and even psychiatric in nature.330 No cure for MS 

exists to date, illustrating the imperative need for new treatment approaches.  

 Experimental autoimmune encephalomyelitis (EAE) is a commonly used murine 

model of MS, whereby immunization of mice with myelin oligodendrocyte glycoprotein 

(MOG) results in the expansion of MOG-reactive T cells.330 An aberrant role of caspase-

1 activation in MS pathobiology was described nearly a decade before NLRP3 was 

implicated. EAE induced transcriptional priming of caspase-1, expression of which 
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positively correlated with disease severity.353 Moreover, increased levels of active 

caspase-1 also correlated with circulating levels of pro-inflammatory cytokines, including 

IL-1β,353 suggesting that caspase-1 plays a central role in cytokine generation in MS. 

Finally, mice lacking caspase-1 had significant reductions in EAE severity, with marked 

loss of MOG-specific Th1 cells.353 Furthermore, a model of EAE in the context of Nlrp3 

loss elegantly supports these findings and the crucial role of the NLRP3 

inflammasome/caspase-1 axis in MS. Loss of Nlrp3 resulted in a significant reduction in 

disease severity and course, substantial reductions in inflammatory cell infiltration, 

reduced myelin destruction and diminished response capacity of Th1 and Th17 CD4+ 

cells.354 IFN-γ and IL-17 are pro-inflammatory cytokines secreted by Th1 and Th17 cells, 

respectively, and these CD4+ T cell populations have well-documented roles in the 

pathobiology of autoimmunity. Also, in a model of EAE in the context of Il1 knockout, 

IFN-γ and IL-17 production were significantly reduced in the T cell compartment, which 

was associated with an improved phenotype.355 Interestingly, Th17 cells are profoundly 

increased in LR-MDS patients,97 consistent with an autoimmune reaction. Taken 

together, these data suggest that akin to LR-MDS, therapies targeting the NLRP3 

inflammasome may have clinical utility in treating MS. 

Alzheimer’s disease. Alzheimer’s disease (AD) is a devastating 

neurodegenerative disease whereby progressive dementia occurs as a result of 

neuronal cell death, specifically of microglial cells.270 Mechanistically, the pathogenesis 

of AD has been linked to the accumulation of amyloid β, a fibrillar peptide, within senile 

plaques in the cerebrum.270,330 Nearly three decades ago, it was determined that 

expression of IL-1β was significantly increased in senile plaques,356 and recent reports 
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have indicated that active caspase-1 expression is increased in patients with AD,357 

suggesting a pathobiological role for NLRP3 inflammasome activation. Accordingly, 

microglial cells were shown to be recruited to senile plaques, whereby they become 

activated by and phagocytose amyloid β.358 Once phagocytosed, amyloid β damages 

lysosomes, resulting in release of cathepsin B,270 a known secondary trigger for NLRP3 

inflammasome activation. Consequently, the NLRP3 inflammasome becomes activated, 

triggering autocatalytic cleavage of caspase-1 and subsequent generation and release 

of IL-1β. Notably, genetic deletion of Asc, Casp1 or Il1b prevented microglial activation, 

indicating the importance of the NLRP3 inflammasome axis in the pathobiology of 

AD.270 These findings were corroborated and strongly supported by experiments 

performed in Nlrp3-/- mice crossed with APP/PS1 transgenic mice, a common model of 

AD characterized by amyloid β plaque deposition.357 In this context, deposition of 

amyloid β was significantly reduced, as was senile plaque size and activation of 

microglia.357 Together, these data suggest that inhibition of the NLRP3 inflammasome 

signaling pathway would likely afford therapeutic benefit in AD.  

Parkinson’s disease. Parkinson’s disease (PD) is a neurodegenerative disease 

characterized by aberrant cell death of dopaminergic neurons within the susbtantia 

nigra of the midbrain, resulting in severe motor impairments.330,359 Within the 

dopaminergic neurons, Lewy bodies form, which are aggregated inclusions within the 

cell that contain significant amounts of the fibrillar protein alpha-synuclein (α-Syn).359 

The α-Syn fibers that form in PD are similar to the amyloid β fibers that form in AD.330 

Although unknown for a time, the marked inflammation characteristic of PD has since 

been attributed to an aberrant role of NLRP3 inflammasome activation. Mechanistically, 
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dopaminergic cells release α-Syn into the extracellular space, which is subsequently 

phagocytosed by microglial cells.359 Upon phagocytosis, and by a mechanism similar to 

amyloid β-induced NLRP3 inflammasome activation in AD, the α-Syn induces lysosomal 

damage, triggering the release of cathepsin B that serves as a secondary activation 

trigger for NLRP3 inflammasome complex assembly.359 Consequently, the 

inflammasome generates active caspase-1 and IL-1β, which is secreted and propagates 

inflammation. Notably, the phagocytosis event also triggers activation of NOX, resulting 

in ROS generation that additionally may activate the inflammasome complex.359 Once 

released, inflammatory cytokines and ROS damage the surrounding dopaminergic cells, 

triggering cell death. The detrimental effects of NLRP3 inflammasome-driven IL-1β 

production were demonstrated in a murine model, whereby mice were dosed daily with 

IL-1β. Compared to controls, IL-1β-treated mice phenocopied human PD just after three 

weeks of treatment, with significant cell death of dopaminergic neurons, increased 

microglial cell activation and inflammatory cell infiltrate, and severe akinesia.360 Finally, 

the aberrant role of NLRP3 inflammasome activation in PD was demonstrated in an 

alternative model. Nlrp3-/- mice treated with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP), a known inducer of the PD phenotype, were protected from 

overt development of PD compared to littermate controls.361 These data indicate that 

abrogating NLRP3 inflammasome signaling or neutralization of IL-1β may have clinical 

utility in PD.  

Gout and pseudogout. Gout and pseudogout represent two common 

arthropathies, or rheumatic diseases, which are characterized by the abnormal 

deposition of crystals, specifically monosodium urate (MSU) and calcium pyrophosphate 
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dehydrate (CPPD), respectively, in the intra- and periarticular spaces within joints.332 

Phenotypically, these areas are acute and chronically inflamed, resulting in severe pain 

and swelling.331,332 Though MSU and CPPD have had a longstanding and well-

described role in the pathobiology of gout and pseudogout, respectively, the precise 

mechanism underlying crystal-induced inflammation was just recently elucidated. Both 

MSU and CPPD induce NLRP3 inflammasome activation, triggering activation of 

caspase-1 and subsequent maturation and release of IL-1β and IL-18.362 Indeed, 

crystal-induced generation of IL-1β is abrogated in macrophages that lack ASC, CASP1 

or NLRP3, indicating the importance of the NLRP3 inflammasome signaling cascade in 

the disease pathobiology. These data are supported by an in vivo model of disease, 

whereby mice deficient in Nlrp3 had improved phenotypes and reduced infiltration of 

inflammatory cells, particularly neutrophils, which are associated with severe joint 

pain.362 Finally, a small pilot study of anakinra, an IL-1 receptor antagonist, was 

performed in ten patients with gout refractory to standard anti-inflammatory therapies.363 

Though responses varied among patients, 90% demonstrated resolution of arthritic 

symptoms in just three days after treatment was initiated, with no adverse effects 

reported among the cohort.363 While randomized trials would be required to confirm 

effectiveness, abrogation of the NLRP3 inflammasome axis is an attractive therapeutic 

approach in gout and pseudogout.  

Fibrosing disorders. Prolonged exposure to environmental irritants is a known 

etiological factor of MDS, the pathobiology of which is intricately linked to NLRP3 

inflammasome activation. Notably, fibrosing disorders represent a heterogeneous group 

of diseases that include idiopathic pulmonary fibrosis (IPF), silicosis and asbestosis. 
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These disorders are progressive and fatal, with no effective therapeutic strategies 

identified to date. However, they have been linked to aberrant inflammation, specifically 

resulting from NLRP3 inflammasome activation.  

Silicosis and asbestosis develop after prolonged and chronic exposure to silica 

and asbestos, respectively, evidenced by increased production of pro-inflammatory 

cytokines, including IL-1β, by alveolar macrophages isolated from individuals reporting 

greater than ten years of exposure, versus controls with less than ten years.269 Notably, 

in a British study, those harboring a polymorphism in the receptor IL-1RA were at 10.2-

fold greater risk of developing a fibrosing disorder, implicating a role of aberrant IL-1β 

production in these conditions.364 From a mechanistic standpoint, once inhaled, silica 

and asbestos deposit in the lung alveoli, whereby they undergo clearance by resident 

macrophages through phagocytosis.269 Subsequently, phagocytosis of these crystalline 

irritants results in NOX-dependent ROS generation and lysosomal destabilization, both 

of which trigger NLRP3 inflammasome activation.269,365,366 The inflammasome then 

activates caspase-1, triggering maturation and release of IL-1β, which instigates 

inflammation and lung injury mediated by the activation of fibroblasts. The importance of 

the NOX/ROS/NLRP3 inflammasome-dependent pathway in pathobiology was 

confirmed by a number of in vitro and in vivo observations. For one, Nlrp3-/- mice have 

reduced fibrosis, immune cell infiltrate and cytokine production when challenged by a 

model of asbestos inhalation.366 Also, shRNA-directed silencing of p22phox, a central 

subunit of the NOX complex, in the THP-1 monocytic cell line resulted in significant 

reductions in IL-1β secretion.366 Finally, thioredoxin (TRX) is a key redox protein that 

regulates NLRP3 inflammasome activation by binding to TRX-interacting protein 
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(TXNIP) under basal conditions.260 In high ROS conditions, TRX undergoes oxidation, 

which liberates TXNIP and allows it to bind to NLRP3, leading to inflammasome 

assembly and activation.261 Silencing of TRX in THP-1 cells resulted in a significant 

increase in mature IL-1β production, implicating a redox-dependent mechanism of 

inflammasome activation.366  

Lastly, IPF represents a particularly devastating condition whereby progressive 

lung injury, resulting in scarring and fibrosis, leads to respiratory failure and death. No 

effective therapies have been identified to date, indicating the need for increased 

understanding of disease pathobiology. Acute pulmonary injury is commonly 

investigated in a murine model whereby mice are treated with the cytotoxic agent 

bleomycin, which induces a phenotype akin to human IPF with increased inflammation, 

cytokine and chemokine production, and fibrosis.367 Notably, mice deficient in Il1ra were 

protected from bleomycin-induced lung injury, while those treated with recombinant 

murine IL-1b were phenotypically similar to mice subjected to bleomycin treatment.367 

Use of anakinra significantly decreased inflammation following bleomycin treatment,367 

confirming the pathobiological role of IL-1β generation in IPF. Importantly, IL-1β 

production in response to bleomycin-induced injury required the NLRP3 inflammasome 

adaptor protein ASC, implicating a role for inflammasome activation.367 More than likely, 

unknown DAMP signals trigger NLRP3 inflammasome activation in IPF, resulting in 

caspase-1 activation and release of IL-1β, leading to activation of fibroblasts that 

exacerbate lung injury. These data warrant investigation of inflammasome inhibitors in 

fibrosing disorders, which may represent the first effective, targeted therapeutic 

approach in these conditions.  
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Ischemia-reperfusion injury. Ischemia-reperfusion injury (IRI) describes the 

condition of tissue or organ damage resulting from loss of blood flow to the area, which 

culminates in significant injury and cell death that is exacerbated following the 

restoration of flow to the area, which increases immune cell infiltration, ROS and 

inflammation.331 IRI is known to occur following a number of conditions, including 

serious trauma, stroke and transplantation surgery.331 The inflammatory response 

generated as a consequence results in significant organ damage, morbidity and even 

mortality, as dysfunction in one organ can trigger a systemic immune reaction that 

damages other organs.331 Presently, no therapies exist for the prevention or treatment 

of IRI, indicating a clear therapeutic need.  

Renal, hepatic and myocardial IRI occur commonly, and the sterile inflammation 

resulting from each type of injury occurs as a consequence of NLRP3 inflammasome-

driven inflammation. In murine models of renal IRI, loss of Nlrp3 was associated with 

significant reduction in pro-inflammatory cytokine generation, specifically IL-1β and IL-

18, immune cell infiltration and preservation of renal function.368 Similarly, mice pre-

treated with shRNAs targeting Nlrp3 were protected from hepatic injury following 

ischemia induction.369 Active caspase-1, IL-1β and IL-18 generation and NF-κB activity 

were all significantly reduced with Nlrp3 downregulation.369 Both pharmacologic 

inhibition of the IL-1 receptor as well as gene delivery of IL-1 receptor antagonist to the 

liver protected mice from IRI and increased survival following injury.370,371 Lastly, loss of 

Casp1 and Asc protected mice from myocardial injury following IRI, with significant 

reductions in IL-1β production, immune cell infiltration and fibrosis.372 Neutralization of 

IL-18 or IL-1β in murine models of myocardial IRI resulted in improved outcomes, with 
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reduced injury, inflammation and increased survival.373 In a small pilot study of 10 

patients, treatment with the IL-1 receptor antagonist anakinra improved cardiac 

remodeling following IRI without adverse effects,374 warranting further investigation in 

randomized clinical trials. 

From a generalized mechanistic overview, IRI results in the increased expression 

of ROS and DAMP signals, triggering NLRP3 inflammasome-dependent activation of 

caspase-1 and maturation of inflammatory cytokines IL-1β and IL-18. The inflammatory 

response results in the recruitment of other immune cell infiltrate, which exacerbates 

inflammation, tissue damage and injury. Taken together, these data suggest that 

inhibition of the NLRP3 inflammasome may prevent IRI and adverse outcomes arising 

from organ injury. 

 

Future Directions 

 

NLRP1 Inflammasome Activation. Masters et al. reported the first evidence of 

pyroptosis in the hematopoietic system whereby infection-induced cytopenia occurred 

as a consequence of NLRP1 inflammasome activation.231 Specifically, an activating 

point mutation in Nlrp1a (Q59P) results in aberrant Nlrp1 inflammasome-driven 

caspase-1 activation, leading to a lethal inflammatory phenotype characterized by 

severe cytopenia, abnormal myeloid lineage maturation and HSPC death.231 These data 

suggest that ineffective hematopoiesis can be attributable to activation of the NLRP1 

inflammasome in certain contexts. Given these findings, along with the casual role of 
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NLRP3 inflammasome activation in MDS pathobiology, we investigated the role of 

NLRP1 inflammasome activation in MDS.  

We found that NLRP1 transcript expression is significantly increased in BM-MNC 

from MDS patients (n=10) compared to normal donors (n=6), approximately 23.2-fold 

(Figure 46A). Formation of active NLRP1 inflammasome complexes was confirmed by 

confocal fluorescence microscopy (Figure 46B), whereby BM-MNC from LR- and HR-

MDS specimens display significantly increased a-caspase-1 (MFI 21.1-fold increase in 

LR [p=7.9x10-4] and 23.8-fold in HR [p=0.081]) and co-localization with NLRP1 (MFI 

34.3-fold increase in LR [p=6.4x10-3] and 23.2-fold in HR [p=0.15]) protein expression 

versus normal donors (Figure 46C). These findings indicate that NLRP1 inflammasome 

formation is significantly increased in MDS BM-MNC.  

Moreover, given that S100A9 is a primary initiator of NLRP3 inflammasome 

activation and pyroptosis in LR-MDS, we investigated the ability of S100A9 to initiate 

assembly of NLRP1 inflammasome complexes. Treatment of the U937 monocytic cell 

line with 5 µg/mL rhS100A9 (Figure 47A) resulted in a significant increase in NLRP1 

inflammasome formation (1.2-fold, p=1.1x10-11), with corresponding increases in protein 

expression of a-caspase-1 (2.0-fold, p=3.0x10-5) and NLRP1 (1.2-fold, p=1.6x10-3) 

compared to untreated controls (Figure 47B). Importantly, treatment of normal BM-MNC 

with rhS100A9 significantly increased NLRP1 inflammasome formation and activation 

(5.6-fold, p=3.9x10-5), evidenced by co-localization of a-caspase-1 and NLRP1 (Figure 

47C and 47D). While rhS100A9 treatment did induce protein expression of a-caspase-1 

(1.4-fold, p=0.02) and NLRP1 (126.1-fold, p=2.3x10-3), as well as maturation of active 
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Figure 46. NLRP1 inflammasome formation and activation is significantly 
increased in MDS BM-MNC. (A) qPCR analysis of NLRP1 gene expression in BM-
MNC isolated from MDS patient specimens (n=10 total; n=5 lower-risk and n=5 higher-
risk disease) compared to normal BM-MNC (n=6). (B) Representative confocal 
fluorescence micrograph (2520x magnification, 7.5 µm scale) of a-caspase-1 and 
NLRP1 expression in MDS versus normal BM-MNC. DAPI (blue), a-caspase-1 (green), 
NLRP1 (red); merged images show inflammasome formation. (C) Quantitative analysis 
of confocal images of BM-MNC isolated from MDS patients [LR (n=7), HR (n=3)] and 
normal donors (n=6). Error bars: SE, **p<0.01 and ***p<0.001.  
 

NLRP1 inflammasome complexes, this occurred to a lesser extent than that observed in 

MDS specimens (Figure 47D). Together, these data indicate that S100A9 also initiates 

NLRP1 inflammasome activation in MDS.  

Moving forward, it would be interesting and worthwhile to continue investigations 

into the role of NLRP1 inflammasome activation in MDS, given that both NLRP3 and 

NLRP1 inflammasomes are active. As activation of both complexes culminate in 

pyroptosis, it would be important to identify the contribution of NLRP1 inflammasome 



www.manaraa.com

 
 

196 

 

Figure 47. S100A9 induces NLRP1 inflammasome formation in U937 cells and 
normal BM-MNC. (A) Representative micrograph (2520x magnification, 7.5 µm scale) 
depicting inflammasome formation in U937 cells untreated or treated with 5 µg/mL 
rhS100A9 for 24 hours. DAPI (blue), a-caspase-1 (green), NLRP1 (red); merged images 
show inflammasome formation. (B) Quantitative analysis of confocal images from (A). 
(C) Representative micrograph (2520x magnification, 7.5 µm scale) depicting 
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inflammasome formation in normal, untreated BM-MNC or normal BM-MNC treated with 
5 µg/mL rhS100A9 for 24 hours. DAPI (blue), a-caspase-1 (green), NLRP1 (red); 
merged images show inflammasome formation. (D) Quantitative analysis of confocal 
images of BM-MNC from normal donors (n=6), normal BM-MNC treated with rhS100A9 
(n=2) and MDS patients (n=10). Error bars: SE, *p<0.05, **p<0.01 and ***p<0.001.  
 

activation to MDS pathobiology. To start, preliminary investigations can be carried out in 

the THP-1 NLRP3 knockout cell line, which would provide biological assessment of the 

contribution of NLRP1 inflammasome activation following inflammasome-specific 

stimuli. Following treatment of these cells with rhS100A9 or other stimuli, we can assess 

NLRP1 inflammasome formation, caspase-1 activation and generation of IL-1β. 

Moreover, as ICTA is an NLRP3 inflammasome inhibitor, it would be interesting to 

determine whether treatment of the NLRP3 KO cells additionally inhibits formation and 

activation of NLRP1 inflammasome complexes. Lastly, colony formation assays 

performed in THP-1 NLRP3 KO cells with and without CRISPR/Cas9-mediated deletion 

of NLRP1 would confirm whether the NLRP1 inflammasome imparts negative effects on 

colony forming capacity.  

To determine if NLRP1 inflammasome activation contributes to pyroptosis and 

ineffective hematopoiesis, colony formation assays can be performed on MDS BM-MNC 

following CRISPR/Cas9-mediated deletion of NLRP1 and/or NLRP3. Genetic ablation of 

NLRP3 would be expected to increase colony forming capacity, and deletion of NLRP1 

may also. It is likely that the combination would have additive effects on improving 

hematopoiesis. It would also be worthwhile to treat LR-MDS BM-MNC with ICTA as well 

as S100A9Tg BM cells, and assess changes in NLRP1 inflammasome activation. In the 

event that NLRP1 plays a non-redundant role in pathobiology, novel pharmacologic 
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inhibitors of inflammasome complexes would need to abrogate both NLRP1 and NLRP3 

inflammasome formation to truly afford clinical benefit.  

ER Stress/Inflammasome Signaling Axis. The function of the endoplasmic 

reticulum (ER) is intricately linked to cellular redox status. We reported a role for 

NAPDH oxidase (NOX) 1/4-specific activation in LR-MDS, whereby somatic gene 

mutations and DAMP signals, particularly S100A9, activate these NOX-specific isoforms 

to generate ROS that initiate NLRP3 inflammasome and β-catenin activation.199 

Notably, NOX4 is associated both with the plasma membrane and is the only ER 

membrane resident NOX isoform. NOX4-dependent ROS production is a key upstream 

signal directing the ER stress response.375 Within the ER, three transmembrane 

proteins function as sensors of ER unfolded proteins, namely inositol-requiring enzyme 

1α (IRE1α), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) and 

activating transcription factor 6 (ATF6).376 Accumulation of unfolded proteins within the 

ER triggers activation of these sensors, resulting in downstream signaling aimed to 

restore cellular homeostasis or alternatively, in the absence of remediation, initiate cell 

death.376 Interestingly, TLR2 and TLR4 signaling activates IRE1α, which augments 

innate immune signal response,377 which are significantly up-regulated and 

hyperactivated in LR-MDS. Furthermore, expression of the redox protein TXNIP is 

induced and stabilized upon IRE1α activation, whereby IRE1α marks a number of 

microRNAs (miRs) for degradation, including miR-17, which negatively regulates TXNIP 

activity.378,379 During basal conditions, TXNIP resides within the nucleus. However, 

during oxidative stress, it shuttles to the site of mitochondria whereby it directly binds 

mitochondrial-associated NLRP3,380 mediating NLRP3 activation. NLRP3 then activates 
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caspase-2 and Bid, which propagate mitochondrial damage, leading to the release of 

mitochondrial-derived ROS (mtROS) and mitochondrial DNA (mtDNA).381,382 

Consequently, mtROS and mtDNA function as triggers of NLRP3 inflammasome 

assembly, resulting in inflammasome activation, maturation of caspase-1 and IL-1β 

production.378 Pharmacologic inhibition of IRE1α or TXNIP silencing were shown to 

block mature IL-1β release,378,382 indicating the importance of ER stress-dependent 

activation of the NLRP3 inflammasome complex. The interaction between the ER, 

mitochondria and the NLRP3 inflammasome is outlined in Figure 48. 

We have shown that MDS BM-MNC are under oxidative stress, that TXNIP gene 

and protein expressions are increased and others demonstrated that mitochondrial 

dysfunction is common.199,203 Therefore, it would be informative and worthwhile to 

investigate the ER stress/NLRP3 inflammasome axis in MDS. These investigations 

would further our understanding of the mechanisms governing NLRP3 inflammasome 

assembly, and may additionally identify novel therapeutic strategies. Finally, NLRP1 is 

up-regulated during ER stress through an IRE1α-dependent mechanism,383 which 

raises the notion that perhaps increased NLRP1 expression and activation in MDS is a 

consequence of ER stress. Elucidating the relationship between NLRP1 activation and 

the ER stress pathway, as well as potential interaction between NLRP1 and NLRP3 in 

MDS represents a promising line of investigation.  

5’ Adenosine Monophosphate (AMP)-Activated Protein Kinase. AMP-

activated protein kinase (AMPK) is a central energy sensor and regulator of metabolism, 

with known anti-inflammatory actions.342 Functional loss of AMPK activity has been 

associated with a growing number of inflammatory and metabolic conditions.384 AMPK 
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Figure 48. ER stress triggers NLRP3 activation, leading to mitochondrial 
dysfunction and activation of the NLRP3 inflammasome complex. (A) ER stress 
results in activation of one or more of the ER stress sensors, including IRE1α. (B) Once 
active, IRE1α triggers the degradation of miR-17, a negative regulator of the redox 
protein TXNIP, which increases TXNIP expression and function. (C) Under basal 
conditions, TXNIP resides within the nucleus but shuttles to mitochondria under 
conditions of oxidative stress. Here, it directly binds and activates NLRP3, which 
catalyzes maturation of caspase-2 to its proteolytically active form. (D) Active caspase-2 
drives mitochondrial damage, which leads to the release of mitochondrial ROS (mtROS) 
and DNA (mtDNA) into the cytosol. (E) Both mtROS and mtDNA function as secondary 
signals for NLRP3 inflammasome activation, resulting in activation of caspase-1, 
release of IL-1β and IL-18 and pyroptosis.  
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and NLRP3 inflammasome activation are negatively related, as loss of AMPK activity 

increases inflammasome-driven inflammation.384 More specifically, this occurs through a 

NOX-dependent mechanism. Wang et al. demonstrated that reduced AMPK activity 

increases expression of NOX1 and NOX4, including other key subunits required for 

NOX function.385 This was associated with reduced NOX-dependent ROS generation 

and NF-κB activation, which was attenuated by pharmacological activation of AMPK or 

over-expression of a constitutively active form of AMPK, illustrating that AMPK 

negatively regulates NOX and ROS.385 Notably, metformin, a drug used in the treatment 

of type 2 diabetes mellitus, activates AMPK and reduces NLRP3 inflammasome 

activation, significantly reducing the release of both IL-1β and IL-18.384 These findings 

are supported by AMPK-mediated phosphorylation of TXNIP during conditions of stress, 

which results in degradation of the redox protein.345 

Given the pathobiological role of the NLRP3 inflammasome in MDS, it is highly 

plausible that AMPK activation is suppressed. As both NOX-derived ROS and TXNIP 

mediate NLRP3 inflammasome activation in LR-MDS, and AMPK negatively regulates 

the function of these proteins, activation of AMPK activity represents a worthwhile 

strategy for investigation in MDS. Moreover, reductions in AMPK activity result in 

mitochondrial dysfunction with augmented release of mtROS and mtDNA.342 Evidence 

of aberrant mitophagy has been documented in LR-MDS,105,210 suggesting that reduced 

AMPK activity may be culpable. To start, AMPK activation could be assessed in LR-

MDS BM-MNC specimens, S100A9Tg BM cells and in the mutant cell lines and models 

of gene mutation (Chapter 2). If AMPK activation were indeed reduced in MDS, then 
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identification of a potent and specific activator could inhibit NLRP3 inflammasome-

driven signaling and pyroptosis. 

Moreover, AMPK activation suppresses transcriptional reprogramming of somatic 

cells to a stem cell-like phenotype, characterized by increased expression of 

transcription factors like Oct4, Sox2 and c-Myc.386 Interestingly, metformin treatment is 

capable of inhibiting somatic reprogramming, effectively creating a barrier to 

stemness.386 Given that MDS progression is associated with increased stem cell 

survival, self-renewal and propagation, it is likely that AMPK activation may prevent 

propagation of the MDS clone and disease progression to leukemia.  

 

Conclusion 

 

 Identification of the NLRP3 inflammasome complex as a driver of the MDS 

phenotype, both in non-del(5q) and del(5q) disease, has the capacity to transform the 

present understanding of the pathobiology of MDS. More importantly, the findings 

described in this manuscript indicate that strategies intended to neutralize S100A9 or 

inhibit NLRP3 inflammasome assembly offer therapeutic potential in these disorders. In 

del(5q) MDS, our preliminary investigations indicate that NLRP3 inflammasome 

inhibition can promote effective erythropoiesis without selective clonal suppression. 

These data support the investigation of inflammasome inhibitors in patients that are 

refractory to lenalidomide, the current standard of care. Moreover, we have identified 

the first diagnostic biomarker of MDS, or the percentage of glucose-adjusted PB 

plasma-derived ASC specks. Specks are not only readily quantified by flow cytometry, 
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but also provide an independent parameter of morphology, which is invaluable from a 

diagnostic perspective. The implementation of speck quantitation at the time of 

diagnosis has the capacity to minimize diagnostic error. In implicating NLRP3 

inflammasome activation in MDS pathobiology, we have opened new avenues for 

exploration. Specifically, pathways related to NLRP1 inflammasome activation, ER 

stress and AMPK activity have yet to be explored in MDS. Increased understanding of 

NLRP3 inflammasome signaling and regulation will surely lead to the identification of 

novel targets with potential clinical translation, not only in MDS but also diseases with 

aberrant inflammasome activation such as Alzheimer’s disease, Parkinson’s disease, 

type 2 diabetes mellitus, inflammatory bowel and rheumatologic disorders, among 

others.  
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